
ExampleObserver.pvc

!
! (c) Copyright 2006, Sage Software Canada Ltd. (Ontario, Canada)
! $Id: ExampleObserver.pvc,v 1.19 2008/02/05 19:44:30 fred.mcguirk Exp $
/*
 * Build information:
! ** @Author Fred McGuirk
! ** @Date Dec 4, 2006

! ** This is an example of the observer class.
! ** The name of the observer must be unique. It must also be used when
! ** identifying this class in the 'classes.txt' file in the./ext folder by
! ** adding a line "eventName=ExampleObserver".
! **
! ** The entries in the "classes.txt" file are loaded automatically during start
! ** of the ProvideX Event Manager. As each class is successfully loaded, it is
! ** added the the observers preference page. This gives the user control of the
! ** external observers (if any) that are active.
 */

/*
 * The directory 'ext/' must not be included in the name of this class.
 * The directory is in the prefix that has been set by 'ide_events.pvx' so
 * the class will be found using the simple name.
 */
def class "ExampleObserver"

like "EventManagerObserver"

! Override the value to be the actual description of this observer
local theDescription$="Example observer"

! Override Value to register the observer
local theNotificationFlag=_pvxConstants'_idePostProcess

/*
! ** The logic to be executed when the observer is triggered. This logic must
! ** check the major and minor codes to determine the current event and then
! ** decide what action is to be performed.
! **
! ** If this observer is set to watch both Pre-Process and Post-Process states
! ** for events, the logic in the 'update' method must check the state of the
! ** aPvxState'getArgument(_pvxConstants'_iEventNotificationFlag$) flag to
! ** determine the appropriate code to be executed.
! ** @param state A reference to an object of class %PvxClass(PvxState)%

 */
function update(initPvxState) update

end def

update:
enter aPvxState

local psMajor$,psMinor$,source,dest$

! Get the Major/Minor codes that identify the current action
psMajor$=aPvxState'getMajor$(), \
psMinor$=aPvxState'getMinor$()

Page 1

ExampleObserver.pvc

/*
 * Turn on the event log to see a list of the arguments for a specific event, or
 * consult the documentation for building external observers for the list of
 * constants that have already been defined for this purpose.
 */

! Get the arguments from the current action that this logic will use
reqSocket$=aPvxState'getArgumentValue$(_pvxConstants'Request_Socket$), \
source$=aPvxState'getArgumentValue$(_pvxConstants'SrcFile$), \
dest$=aPvxState'getArgumentValue$(_pvxConstants'Dest$)

/*
 * It is possible to override or change the value of an existing argument...
 */
newDest$=dest$+".tmp"
aPvxState'setArgument(_pvxConstants'Dest$,newDest$)

/*
 * Add logic to the specific events that this observer is watching
 *
 * This logic can be added using a SWITCH / CASE structure or a simple IF-THEN.
 *
 * In either case, the action is identified by a major and minor combination code.
 * The full list of major/minor codes is listed in the "Plug-in Structure" section
 * of the documentation for "Extending the ProvideX Plug-in".
 *
 * To keep things simple, this example will use an IF-THEN to add new logic to
 * the Incremental Build post routines.
 *
 */
if (psMajor$=_pvxConstants'Incremental_Build$ or

psMajor$=_pvxConstants'Incremental_Build_Alt_Exe$) \
and psMinor$=_pvxConstants'BuildType_BuildOne$ {

/*
 * The logic that is added cannot use any user-interaction directives since there
 * is usually no visible ProvideX window where this information can be displayed.
 * Also, the normal build process will be blocked until all processing has been
 * completed; a delay in an observer will affect the entire Eclipse session.
 */

! print a message to the CONSOLE view
aRQ=new("pvxrequestclient",reqSocket$)
aRQ'print("Hello, world ... in console view")
drop object aRQ

}
return 0

end

Page 2

