
ProvideX
VERSION 7

Contents iii
Preface v
Introduction 9
Choosing the Right Solution 10
Client-Server Functionality 17
WindX - Windows Thin-Client 31
JavX - Java-Based Thin-Client 43
Application Server 81
AutoUpdater 133

Client-Server Reference
WindX, JavX, Application Server, AutoUpdater

ProvideX is a trademark of Sage Software Canada Ltd.
All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2006 Sage Software Canada Ltd. — Printed in Canada
8920 Woodbine Ave. Suite 400, Markham, Ontario, Canada L3R 9W9

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer to the Sage Software Canada Ltd. website www.pvx.com for
current information.

Publication Release: V7

ProvideX Client-Server Reference Back iii

Contents

Preface
Using this Documentation . v
Conventions . vi

Chapter Outlines . vii

1. Introduction
Thin-Client Products . 10 Background and Prerequisites 13

2. Client-Server Functionality
Hosting Facilities . 17
Standard Thin-Client Behaviour 21

JavX vs. WindX . 26
Thin-Client Utility . 28

3. WindX - Windows Thin-Client
Installation and Configuration 32
Launching WindX . 37

WindX Thin-Client Functionality 39

4. JavX - Java-Based Thin-Client
Installation and Configuration 44
Launching JavX . 46
Common Functionality and Limitations 48

JavX for PC Platforms . 60
JavX for Portable Devices . 73

5. Application Server
Server Configuration . 83
Running the Server .106
Client Configuration .108
Session Spawning . 112

Session Object Properties .115
Customizing . 120
Sample Setup Procedure . 124
Troubleshooting . 132

6. AutoUpdater
AutoUpdater Configuration 135
How it all Works .142
The Repository File .145

Customizing the AutoUpdater 146
Troubleshooting . 147

Contents

ProvideX Client-Server Reference Back iv

ProvideX Client-Server Reference Back v

Preface

The ProvideX Client-Server Reference provides details on the installation,
configuration, and operation of ProvideX thin-clients and hosting facilities.
Although this volume is intended for application developers, it does not try to
explain how to design or create a client-server program – instead, it documents the
tools that are available for building client-server implementations in ProvideX.

Refer to the ProvideX Language Reference for descriptions of ProvideX keywords
and concepts: directives, functions, system variables, mnemonics, parameters,
specialty files, reserved words and system limitations. Rather than reproduce
existing material, references to other publications may be supplied where applicable.

Using this Documentation U sing this Documentation

This documentation is designed for both viewing and printing via Acrobat® Reader.
Click Help > Reader Guide on the menu bar to learn how to display, copy, search,
and print PDF documentation. While there are several ways to navigate the contents
of a PDF-based document, the following methods are highly effective, and are
consistent with other documentation distributed by ProvideX:

Bookmarks
The list of bookmarks, displayed on the left side of the Acrobat window, serves as a
hyperlinked table of contents. Bookmarks are displayed in a hierarchy where subordinate
headings appear indented below main headings. When subordinates are hidden or
collapsed, a plus sign (in Windows) or triangle (in Mac OS) will appear next to the main
heading. Simply click on the plus sign or triangle to display all collapsed headings.

Cross-References
Blue hyperlinks appear throughout this document wherever one section cross-references
another. They also appear in the form of hyperlists; such as the Table of Contents, the
Index, and the linked tables placed at the beginning of some chapters.

Preface Conventions

ProvideX Client-Server Reference Back vi

Navigat ion Tips

The mouse pointer looks like an index finger when it is positioned over a linked
cross-reference — simply click to activate the link. For example, "Using this
Documentation" is hyperlinked back to the beginning of this section.

Conventions Conventions

The following syntax items are used to illustrate what is needed in the format of a
program statement in ProvideX.

PDF Navigation Tips: The chapter name at the top left corner of the page head can be
used as a hyperlink to the beginning of the chapter. Use the page-up/down/back/
forward buttons to move one page at a time. Use the Back button to
jump to the previous view.

... Dots indicate the continuation of a list of elements.

[] Square brackets enclose optional elements in the format. For example, in
ABS(num[,ERR=stmtref]) you can omit the ERR=stmtref portion of the
statement as in ABS(X-Y). (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

{ } Curly brackets enclose a list of elements in syntax formats where it is
mandatory to select one item. For example, with {YES | NO}, you must
select either YES or NO. In descriptions in this manual, they denote
{bitmap / icon} buttons. (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

 | Vertical bars (pipes) separate a choices; e.g., {YES | NO}.

chan Channel or logical file number. It must be an integer between 0 and 127. This
identifies the channel to which your directive applies; e.g., CLOSE (14).
• Channel zero (0) is the console. If you omit the channel, the system

defaults to 0 (the console).
• Channels 1 to 63 are commonly used for local files.
• Channels 64 to 127 are used for global files.
• Exception: In extended file mode ('XF' system parameter) the channels range

from 0-32767 for local files, and 32768-65000 for global files.

col,ln,
wth,ht

Position/coordinates. Numeric expressions. Column and line coordinates for
top left corner, width in number of columns, and height in number of lines.

ctrlopt,
fileopt

Optional syntax elements — three-character codes followed by an equals
sign and argument (DOM=3250). For a list of typical options, see
Input/Output and Control Options in the Language Reference.

stmtref Statement reference. This can be either the line label or line number of a
statement in the current program. Line numbers must be in the range of 0
to 64999.

Preface Chapter Outlines

ProvideX Client-Server Reference Back vii

Numeric Expressions and Variables
When a syntax format in this manual includes a numeric variable like chan, index or
num (lowercase), you can normally substitute a numeric expression consisting of
variables, literals, functions, and operators. For instance, your value could be something
like HFN or 4 or NUM(A1$)*3-2. (NUM in upper case is the function.) When numeric
variables are used in numeric expressions, subscripts are allowed; e.g., COST[4].

String Expressions and Variables
When a syntax format in this manual includes a string variable like prog_name$ or
title$, you can normally substitute a string expression consisting of variables, literals,
functions, and operators; e.g., PRINT "Printing "+REPORT$. When string
variables are used in string expressions, subscripts and substrings are allowed; e.g.,
CUSTOMER$(15,4).

Chapter Outlines Chapter Outlines

Chapter 1. Introduction, p.9. Provides an overview of ProvideX client-server
functionality explains differences between available thin-client products.

Chapter 2. Client-Server Functionality, p.17. Discusses general client-server
concepts and explains standard behaviour that applies to all ProvideX thin-clients.

Chapter 3. WindX - Windows Thin-Client, p.31. Documents the installation,
configuration and operation of the ProvideX Windows thin-client.

Chapter 4. JavX - Java-Based Thin-Client, p.43. Documents the installation,
configuration and operation of the different Java-based thin-client products for PC
platforms and for portable devices.

Chapter 5. Application Server, p.81. Documents the installation, configuration and
operation of the ProvideX Application Server facility.

Chapter 6. AutoUpdater, p.133. Documents the installation, configuration and
operation of the ProvideX utility for automatically updating client applications.

If your given line number does not exist, ProvideX goes to the statement
with the next higher line number. For example, if line 1000 doesn't exist
and 1010 is the next line number, then for GOTO 1000 ProvideX will go to
1010 and proceed with execution from there. See also Labels/Logical
Statement References in the Language Reference.

Exception: ProvideX verifies the existence of an IOList and stmtref for
IOL=stmtref. It does not proceed to the next higher statement number.

varlist List of comma-separated variables. Typically, a mix of string and/or
numeric variables is acceptable; e.g., DEPT,ITEM,DESC$... (See
individual directives for restrictions.)

Note: Exceptions and valid values are stated when there are restrictions on the use of
numeric or string expressions in a format (e.g., where only variable names are allowed).

Preface Chapter Outlines

ProvideX Client-Server Reference Back viii

ProvideX Client-Server Reference Back 9

Client-Server Reference 1
Introduction

ProvideX client-server technologies deliver multilateral solutions for displaying and
interacting with your ProvideX applications on a server.

Thin-Clients
WindX (Windows-based) and JavX (Java-based) thin-clients can be used to optimize
software development and to minimize the resources required to install and/or
service a large user application. With a few changes to your source code, you can
leverage the ProvideX thin-client architecture to maintain heavy processing and data
storage on a secure central server while delivering a custom user interface to a wide
range of client platforms, from web browsers to mobile/handheld devices.

The thin-client functionality is fully integrated into ProvideX and the server handles the
heavy processing. The net result is that:

• Applications can be easily adapted for true distributed processing capability.
• Less software needs to be installed and configured.
• Bandwidth is optimized because only the application GUI travels across the

connection.
• More concurrent users can be served because of the reduced network traffic.
• Data integrity is maintained by keeping data processing on the server.

Application Server
Install the ProvideX Application Server to extend the usability and security of your
server-based applications with secure access control, user and application launch
control, central administration, and access tracking features.

AutoUpdater
The AutoUpdater utility is included with ProvideX to provide a means for
automatically updating client installations of ProvideX and WindX. It can be
configured to check for and install critical patches/upgrades on all client
workstations whenever they are connected to the server.

1. Introduction Thin-Client Products

ProvideX Client-Server Reference Back 10

Thin-Client Products
Historically, programmers have had two thin-clients to choose from in the ProvideX
suite of development tools: WindX, which is written in ProvideX, and JavX, which is
written in Java.

Fundamentally, WindX is designed to provide a Windows graphical environment to
an otherwise non-graphical (non-Windows) application that is based on a remote
computer. Along with a standard Windows user environment, WindX provides for
local file access and processing, and it can be configured to include a client-side
auto-update capability.

When JavX was first introduced, it was designed to be the Java version of WindX.
JavX provides a flexible alternative to the Windows-only thin-client because it takes
full advantage of Java's portability and platform independence. However, it is not
possible to recreate the entire Microsoft Windows environment within the Java
framework, so some WindX functionality is not available under JavX.

JavX uses Java 2 GUI components to replicate the complex graphical features
available in ProvideX. But unlike WindX, a Java-based thin-client is able to run on
any machine that has the appropriate Java Runtime Environment (JRE). Even if the
client machine does not have a Java JRE, it is a free download that can be installed
just prior to running JavX.

For specific differences between the two ProvideX thin-clients, refer to the section
JavX vs. WindX, p.26.

Choosing the Right Solution

With the introduction of the first Windows-based thin-client, WindX delivered the
ability to harness the power of ProvideX at both ends of a client-server
implementation. When JavX was initially released, it promised similar functionality,
but without the dependence on a local copy of ProvideX. This trusted and familiar
thin-client technology is now experiencing a dramatic evolution beyond the simple
desktop platform.

There are currently many millions of Java-enabled mobile phones, PDAs, and other
portable devices currently in use all over the world. Consequently, the ProvideX
thin-client architecture has since been adapted to tap into this exploding
marketplace. Depending on the target platform, developers now have four ProvideX
thin-clients to choose from: WindX, JavX SE, JavX AE, and JavX LE.

But with more choices available, developers need to be sure that they are building
the appropriate client-server implementation to serve their user’s needs. The
differences between the various thin-client products are outlined below, and are
illustrated in the Thin-Client Requirements Table, p.11.

1. Introduction Thin-Client Products

ProvideX Client-Server Reference Back 11

Accessibility vs. Expressiveness
Each client type has its own set of advantages in functionality and flexibility. So,
which is the right solution for your client-server application? Choosing the
appropriate thin-client requires an analysis of the trade-offs between accessibility
and expressiveness. The specific level of functionality offered by each client is
illustrated in the Thin-Client Requirements Table below.

The richest full-featured GUI applications require the closest ties to a specific
platform, which places strict limits on their accessibility. However, when
applications are designed to run on a wider variety of platforms, GUI functionality
has to be abstracted away from the client operating system, which sacrifices
expressiveness.

Therefore, the best ProvideX solution for an expressive GUI might be to employ
WindX to deliver a powerful, but Windows-specific, user environment. Conversely,
you could employ the ProvideX WebServer and use standard HTML forms
(completely outside of WindX or JavX) to deliver a universal, but rudimentary, user
environment.

Thin-Client Requirements Table
The full range of ProvideX client-server options can be illustrated as follows:

WindX
WindX

Full-featured thin-client that takes advantage of the local OS to deliver a rich
graphical environment (along with auto-update capability) from any remote
ProvideX host system to any MS Windows client.

A WindX client is most effective when:
• end-users are accessing the application from a conventional office

workstation
• long complex tasks are to be performed on a regular basis
• application developers determine the client platform (not end-users).

This is fully documented under WindX - Windows Thin-Client, p.31.

JavX SE
JavX SE

The JavX Swing Edition is a Java-based thin-client with similar functionality
to WindX that enables ProvideX applications to run on any number of client
platforms (Windows, Linux, Apple) that support the Java 2 Standard Edition
(J2SE) runtime. With JavX SE, the web browser is promoted to a universal
ProvideX client—users can navigate to a JavX SE-enabled web page which
uses a Java applet to interface with the server application. However, JavX SE
implementations offer slightly less functionality than WindX and have
limited access to the local machine.

1. Introduction Thin-Client Products

ProvideX Client-Server Reference Back 12

A JavX SE client is most effective when:
• end-users are accessing the application from outside the office
• long complex tasks are to be performed occasionally
• end-users require more choice in platforms.

JavX SE is fully documented in the section JavX for PC Platforms, p.60.

JavX AE
J avX AE

The JavX AWT Edition provides a simpler GUI designed specifically for
handheld devices that support the Java 2 Micro Edition (J2ME) runtime.

A JavX AE client is most effective when:
• end-users are accessing the application from outside the office
• more general tasks are to be performed occasionally
• typical platform is a WinCE PDA.

JavX AE functionality is upwardly-compatible with JavX SE and is fully
documented in the section JavX for Portable Devices, p.73.

JavX LE
JavX LE

The JavX Light Edition represents a limited non-GUI version of JavX that is
intended primarily for fixed-purpose industrial or consumer products.

A JavX LE client is most effective when:
• end-users may be performing a few simple tasks using an interactive

device/appliance.

JavX LE functionality is upwardly-compatible with JavX AE/SE and is
fully documented in the section JavX for PC Platforms, p.60.

HTML
Forms

A ProvideX WebServer/HTML implementation allows for a basic web
user environment that has no access to the local machine.

An HTML Forms implementation is an effective client when:
• end-users require brief access to fill in a few form fields that are

presented using a standard web page.

Refer to the ProvideX WebServer documentation for information on
using HTML with ProvideX to create a web application.

Important: It is therefore clear that the appropriate configuration depends entirely on
the needs of your end-users. Avoid trading off a fully-functional GUI in order to gain
universal accessibility that your clients won’t need ... and vice versa.

1. Introduction Background and Prerequisites

ProvideX Client-Server Reference Back 13

Background and Prerequisites
Client-server implementations can be as complex (or as simple) as the applications
they are supporting; however, a few basic requirements must be met in order to
establish a successful client-server connection in ProvideX:

• WindX or JavX thin-client installed/configured on a client machine or device.

• ProvideX application running on a host system that is set up for remote multi-user
access via *NTHost/*NTSlave or the Application Server.

• A network connection between the two.

The sections below provide an brief overview of the prerequisites necessary for
setting up and running a client-server application using WindX or JavX.

Licensing ProvideX Client-Server Facilities
Both WindX and JavX are available as freely-distributable plug-ins; however, each
client installation must be connected to ProvideX on a server that maintains a
multi-user Professional or eCommerce license. If the server is not licensed for plug-in
access, server file/directory permissions are incorrect, or a ProvideX session cannot be
established within 2 minutes of startup, then the plug-in will terminate automatically.

The thin-client connection initially uses one user slot from the server-side ProvideX user
license. Subsequent sessions that are spawned programmatically from the same
workstation will not require additional user license slots.

While the plug-ins are free to use and distribute, both WindX and JavX are subject to
Sage Software license agreements once they are downloaded from www.pvx.com.

WindX Standalone
WindX may also be installed as a standalone product that is capable of interacting with
any ProvideX application on any server. This implementation requires an individual
license (serial number, user count, expiry date and activation key) per installed client.

JavX LE by Request
Unlike other JavX editions, the JavX Light Edition is designed for a wide variety of
fixed-purpose/embedded devices that may or may not have a standardized method
for installing software. Because of this, the JavX LE installation JAR archive file is
currently not available for download. Developers who are interested in running JavX
for a specific device implementation are welcome to contact Sage Software Canada
Ltd. to request a copy of JavX LE.

Note: WindX Standalone and Plug-in downloads are for installation on Windows
95/98/ME/NT4/2000/XP client machines only. JavX may be installed on any OS
platform that supports the Java 2 Standard Edition (J2SE) runtime.

1. Introduction Background and Prerequisites

ProvideX Client-Server Reference Back 14

Application Server
The ProvideX Application Server can be purchased as a separate add-on, but it is also
distributed as part the eCommerce product bundle.

AutoUpdater
This facility is included with the base system activation; however, the AutoUpdater is
only available with ProvideX Version 7 (or higher), and currently it can only be
deployed as part of a ProvideX client-server implementation that includes WindX
(Version 4.11 or higher).

Connection Requirements
In a generic implementation of client-server architecture, one program or computer
acts as a server, providing services to other programs or computers, called clients.
While some computers can be linked directly via fixed connection, most client-server
systems communicate over a network, using technologies that connect through and
between many different computers.

WindX allows a variety of communication methods including serial (RS232), Telnet,
and TCP/IP connections; see WindX - Windows Thin-Client, p.31. However, current
ProvideX thin-client implementations (involving WindX and JavX) are more likely to
be handled via direct TCP/IP using one of the following:

• *NTHost/*NTSlave facilities supplied with the ProvideX base system.

• ProvideX Application Server, full-featured client-server connection system.

For an overview of the procedures required to configure a client-server environment in
ProvideX, see Hosting Facilities, p.17.

TCP/IP Overview
TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is the primary
communication language for governing the services that everyone uses over the
Internet, including file transfer, electronic mail, and remote logon. It is also the
communications protocol for most private (intranet or extranet) networks. Several
other protocols are used by Internet applications in conjunction with TCP/IP,
including Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and
Simple Mail Transfer Protocol (SMTP).

However, among the suite of Internet protocols, it is the TCP and IP components (or
layers) that provide the transport and network address functions for all Internet
communication.

Transmission Control Protocol (TCP) is the layer responsible for successful delivery
of data between client and server. It converts messages/files into small packets that
are transmitted, then reassembled into the original data at the destination computer.
It detects errors or lost packets and will trigger retransmission until all the data is
received intact. TCP support is built into ProvideX.

1. Introduction Background and Prerequisites

ProvideX Client-Server Reference Back 15

Internet Protocol (IP) is the layer responsible for identifying the computer or device
at each end of the link. It uses a four-byte destination address (IP number) that is
usually stated as nnn.nnn.nnn.nnn, where the value of nnn is between 0 and 255.

When a TCP connection is established between client and server, the client requests a
connection to a specific server by giving its IP address and a service identifier
(port/socket number). On the host computer, an application establishes itself by
identifying its service number which typically ranges from 1 to 65535. Typically,
numbers below 2000 are reserved for specific Internet applications, while numbers
above are available for general use.

Network Implementation
Today, almost all commercial operating systems include and install the TCP/IP
layers by default. TCP/IP is included in most UNIX and Linux distributions as well
as with Mac OS X and Microsoft Windows and Windows Server. In many cases the
network settings are configured automatically or via a simple setup procedure once
the user identifies and connects to the network.

Sockets and Ports
As described earlier, each computer on a TCP/IP-based network is identified by a
single IP address. At each IP address, multiple simultaneous connections are a made
possible through the use of software mechanisms called sockets.

When a program needs to share (read/write) data with another program over a
network (local or internet), it gets the operating system to create a socket to establish
the connection between them. Depending on the implementation, the socket may be
either active or passive:

• If it is active, the socket is connected to a remote active socket via an open
connection and there is a constant exchange of information. If the connection is
closed, the sockets at both endpoints immediately cease to exist.

• If it is passive, the socket is not connected but is in a state where it is always
waiting for an incoming connection. If a connection is made, the passive socket
spawns a new active socket.

All sockets are identified by a port number. In a typical TCP/IP implementation,
there would be multiple sockets using the same port. Each port number may
represent a single passive socket (listening for any incoming connections) as well as
multiple active sockets (corresponding to many open connections) on the port.

An apartment building is often used as an analogy for describing how sockets
maintain connections between two machines in TCP/IP addressing. The IP address
is like the apartment building’s street address. The port number is like the apartment
number within the building.

1. Introduction Background and Prerequisites

ProvideX Client-Server Reference Back 16

ProvideX Client-Server Reference Back 17

Client-Server Reference 2
Client-Server Functionality

Client-server functionality has been integrated into ProvideX to create a seamless
environment in which to develop and run applications. On the server side, a ProvideX
host program (either *NTHost or the Application Server) launches a copy of ProvideX
and monitors a TCP/IP socket, "listening" for incoming requests from clients.

On the client side, JavX or WindX opens the client end of the same socket the host is
listening to, and passes requests through to the server.

This chapter provides an overview of general client-server concepts in ProvideX,
discussing server-side implementation (hosting facilities), standard client-side
functionality, and the primary differences between the two ProvideX thin-client
products: WindX and JavX.

Hosting Facilities, p.17
Standard Thin-Client Behaviour, p.21
JavX vs. WindX, p.26
Thin-Client Utility, p.28

Hosting Facilities
In a direct TCP/IP client-server environment, the JavX and WindX thin-clients must
be set up for access on the server-side using either *NTHost/*NTSlave or the ProvideX
Application Server.

*NTHost/*NTSlave are the default programs supplied with the ProvideX base system
for establishing a simple TCP/IP connection; however, we do not recommend this
hosting choice if you require more control over access and security. The ProvideX
Application Server provides an enhanced configurable solution for creating and
maintaining your client-server implementations. More importantly, this add-on
includes a suite of administration tools that allow you to protect your sensitive data
from exposure to hostile network environments; i.e., the Internet.

Note: While the Windows thin-client, WindX, allows connections via Telnet/Serial
Configuration, direct TCP/IP is more common in conventional client-server architecture.

Topics

2. Client-Server Functionality Hosting Facilities

ProvideX Client-Server Reference Back 18

This section describes how to set up the basic client-server processes. If you need a
safer environment for your TCP /IP connections, see Chapter 5. Application Server
for complete configuration details.

Using *NTHost/*NTSlave
*NTHos t/*NTSlave

The default client-server configuration in ProvideX requires two distinct processes.
On the host computer, the program *NTHost is run to monitor incoming requests
from client PCs and to initiate new processes to service these requests. On the client
computer system, the program *NTSlave begins the initial connection to the host by
requesting a new session to be started.

If the sessions can be started, then *NTHost sends back the TCP/IP port number of
the new process. *NTSlave uses this number to connect to this process and passes
control to JavX or WindX to handle all of the terminal and GUI interactions.

In order for the initial connection between *NTHost and *NTSlave to be established,
*NTSlave must know the port number that *NTHost is monitoring. By default, this is port
number 10000 but it can be changed in the command line used to start both programs.
As *NTHost initiates new processes, it assigns new port numbers in increments starting
with the port number one higher than the *NTHost port assignment. By default, up to a
maximum of 1000 sequential port numbers can be assigned.

*NTHost on a Windows Platform
To run *NTHost in Windows, set up a shortcut with the following command line:

c:\pvx\pvxwin32.exe *nthost(assuming ProvideX is installed in c:\pvx)

There are three optional arguments that can be supplied: the port number that
*NTHost is to monitor (and the clients to connect to), the maximum port number to use
for connections, and the ability to request using the TCP/IP Keepalive functionality.
These can be specified in the command line as program arguments; e.g.,

c:\pvx\pvxwin32.exe *nthost -arg 10000 11999 -k

These arguments direct *NTHost to monitor socket 10000 and assign spawned
sessions to port numbers 10001 through 11999. If no arguments are specified, then
*NTHost monitors port 10000 and assigns port numbers 10001 through 10999. Each
session employs the TCP/IP Keepalive functionality to periodically send commands
to a connection to ensure that it is still active.

To run *NTHost, simply launch this shortcut or place it in the Windows Startup
folder to have it run each time the machine is restarted.

*NTHost can also be run as Windows Service, which is a special process designed to
start and run automatically under Windows (NT/2000/XP) directly from start up.
Different methods for setting up service entry points to ProvideX are outlined under
Windows Services in the ProvideX Installation Manual.

2. Client-Server Functionality Hosting Facilities

ProvideX Client-Server Reference Back 19

*NTHost on a UNIX/Linux Platform
Setting up *NTHost on a UNIX (or Linux) platform is a little more complicated and
involves changing the system process 'inittab'.

To run *NTHost as a UNIX service, add a line using the following syntax to the
system 'inittab' file (usually in the directory /etc/):

pvx1:234:respawn:/pvx/pvx *nthost -arg port uid umask

Where:

There are three optional parameters that may be specified at the end of the command
line. They are the maximum port number to assign to the spawned sessions, -v
which indicates that debugging information is to be sent to the system console, and
-k which activates the TCP/IP Keepalive functionality; e.g.,

pvx1:234:respawn:/pvx/pvx *nthost -arg 10000 11999 elvis -v -k

When *NTHost launches new sessions, it does so via an 'su' command. This
ensures that applications do not run as root (which maintains system security). Since
the host program will be spawned from the 'inittab', it will be running with full
root privileges. This means that the host is capable of running any application, and
can utilize 'su' to launch an application under another user ID.

Special care must be taken when using 'su'. The user ID chosen must be valid and
the password must not have expired. If applications refuse to launch, then it is likely
that the password for the user ID has expired, or there is an administrative lock on
the account. The user account should not launch anything automatically via its
profile since the new session picks up the characteristics of the user id being used.

When running under IBM AIX, characteristics such as umask in the user's account
setup may need to be modified as they will override the command line arguments.

Important: The following procedure should only be performed by developers who
are knowledgeable in UNIX.

pvx1:234:respawn 'inittab' parameters that cause UNIX to spawn *NTHost at
all normal execution levels and keep it running.

/pvx/pvx *nthost Location of ProvideX executable, *NTHost program name.

port Port number that *NTHost is going to monitor.

uid UNIX user ID used by the spawned process.

umask umask setting for all spawned tasks used when creating
files.

Note: The \ in front of *nthost causes UNIX to process the * asterisk literally rather
than as a wildcard character.

2. Client-Server Functionality Hosting Facilities

ProvideX Client-Server Reference Back 20

Another potential problem is the number of processes a single user may run. Since
all applications are spawned as this user, the kernel may need to be re-tuned to
increase the number of processes per user.

*NTSlave for Launching Thin-Clients
The *NTSlave process runs on the client side and is used to request a new session,
establish a connection to the server, and then launch WindX. The following *NTSlave
client command line syntax applies to WindX only and is fully documented in the
section Launching WindX, p.37:

c:\pvx\pvxwin32.exe *ntslave -arg server prog port

Unlike WindX, JavX is not dependant on a local copy of ProvideX. Therefore the
*NTSlave functionality is built directly into JavX. The JavX connection from the client
to *NTHost on the server is explained in the section JavX Installation and
Configuration, p.44.

Secure Socket Layer (SSL)

The Secure Sockets Layer (SSL) is a commonly-used protocol for managing the
security of a message transmission on the Internet. Support for TCP/IP-level
SSL-encryption is available for both WindX and JavX when configured for use in the
ProvideX Application Server. SSL is not supported under *NTHost.

Encryption of communications between a JavX client and the ProvideX host was not
possible until Sun added support for SSL to version 1.4 of the Java plug-in. For JavX
to have SSL support, the client machine must have the Java 1.4 (or later) plug-in
installed.

2. Client-Server Functionality Standard Thin-Client Behaviour

ProvideX Client-Server Reference Back 21

Standard Thin-Client Behaviour
Once one of the Hosting Facilities is configured and running on the server, an
installed/configured thin-client should be able to establish communication with the
server-based ProvideX system. As with ProvideX itself, the launch procedures
(command line syntax) for WindX and JavX can be customized to define system
settings, operating environment, and various application requirements. For more
information on the thin-client startup, refer to Launching WindX, p.37 or
Launching JavX, p.46.

ProvideX Session Interface

The default syntax for launching the thin-client environment produces a typical
ProvideX session window for entering and executing programming instructions.
This interface opens with the standard sequence of serial number and copyright
notices followed by a command prompt.

At this point, the server-based ProvideX interposes itself between the user and the
(client) operating system and permits all work to be controlled via the remote
(server) operating system.

Detecting a Thin-Client

Once ProvideX on the server recognizes the terminal as a ProvideX client station, it
changes internal settings that allow graphical requests to be routed to the client
automatically. All graphical directives and functions invoked by the application are
tokenized to be sent to the client.

WindX and JavX are recognized by ProvideX on the server when the terminal type is
set to either winterm or ansi. These are the only two terminal types that are
recognized as potential client stations.

The type winterm uniquely identifies the terminal as a ProvideX client. However,
most UNIX systems will not recognize this terminal type, which means that no other
UNIX application can use it. To resolve this issue, the ProvideX ansi device driver
sends a unique escape sequence to the terminal during its initialization process. If
the terminal is a ProvideX client, then a special response will be generated. However,
if the request times out, then ProvideX carries on under the assumption that the
terminal is really an ansi device.

Note: ProvideX prompts differ slightly when they appear within a thin-client
environment. The main prompt changes from a > to a } and the un-saved program
prompt: colon changes to a ; semi-colon.

2. Client-Server Functionality Standard Thin-Client Behaviour

ProvideX Client-Server Reference Back 22

Client-Side Functionality

The client-side functionality in ProvideX is designed to minimize network traffic and
improve system performance:

• Standard Mnemonics are transmitted "as is".
• Terminal Input/Function keys are sent unchanged.
• Graphical Control Requests are tokenized.
• Turbo Mode allows the client to receive and process requests locally without the

need to acknowledge each transmission from the host.

Mnemonics
WindX and JavX respond directly to the internal form of all mnemonics. Therefore,
unlike conventional terminals, no translation table is required. Mnemonics, such as
'CS', are transmitted as $1B$+"CS" and screen position commands, such as @(1,2),
are sent as $1B$+"@2"+CHR(1)+CHR(2). Long-form mnemonics, such as
'WINDOW' and 'DROP', are sent in their native form as well.

Local Processing
A lot of the functionality regarding screen refreshing is processed locally. This means
that less data needs to be sent to the client station to handle functions such as
window manipulation.

On a normal terminal when a window is created, the characters that make up the
window border are transmitted from the host to the terminal. Additionally, when a
Window is removed, then all of the data that was hidden behind the window must
be redrawn. These two functions are processed locally which reduces the traffic on
the line and improves system performance.

In JavX, the 'PICTURE' mnemonic takes either a URL or path on the local machine
(e.g., www.pvx.com/some.jpg or c:\ some.jpg). If JavX is running as an applet,
it cannot access local files. All image sources (button, picture etc.) must be URLs. If
not, JavX adds the source of the page on which it is embedded to the beginning of
the path; e.g., some.jpg becomes www.thesource/some.jpg.

Terminal Input/Function keys
All input entered at the ProvideX client keyboard is sent directly to the host.
Function keys and CTL events generated by graphical controls are included in the
data stream as well.

2. Client-Server Functionality Standard Thin-Client Behaviour

ProvideX Client-Server Reference Back 23

Graphical Control Requests
ProvideX tokenizes all graphical directives and references, then forwards them to the
client for processing. These tokenized commands are then passed to the local copy of
ProvideX for processing. Additionally, access to the control attributes (e.g.,
BackColour$, Height, Enabled) is tokenized as well and forwarded to the
client for processing.

Turbo Mode
During normal operation, each tokenized message sent by the host to the client
requires an acknowledgment. While this process guarantees that the application and
client are synchronized fully, it can slow down overall transmission speeds.

Turbo Mode allows JavX and WindX to receive and process many requests locally
without the need to acknowledge each transmission from the host. To enable Turbo
Mode, set the system parameter 'TU' on the host system.

While in Turbo mode, acknowledgments are not sent by WindX for directives and
functions that do not return a value, for example, a write command for a graphical
control. If an error occurs, it is reported locally or can be ignored depending on the
configuration option.

Language Enhancements for Thin-Clients

For the most part, thin-client functionality is handled seamlessly within ProvideX.
However, there are some enhancements to the language that are specific to
thin-clients. These are listed as follows:

MSE System Variable
Byte 22 returns the version number of the thin-client (WindX or JavX). A value of
FF means that the client is not connected via a thin-client. Byte 32 returns either
W for WindX or J for JavX or 00 for no thin-client. See determining WindX or
JavX and use of [WDX].

TCB(88) System Function
TCB(88)

This function returns the version code of the thin-client (WindX or JavX), or zero for
no thin-client connection.

Note: In many instances, it is better to use directives rather than attributes when
interfacing with controls under JavX. Each reference to an attribute involves a packet
being sent to the PC. For example, setting grid values would involve setting three (3)
attributes but only one directive.

Note: While Turbo mode does improve performance, it may cause some unexpected
results from code that relies on error detection; e.g., relying on an error branch to detect
a bad value when issuing a WRITE command to a control will not work. To avoid this
situation, either change the application logic or turn off the 'TU' system parameter.

2. Client-Server Functionality Standard Thin-Client Behaviour

ProvideX Client-Server Reference Back 24

FIN() System Function
The FIN() function can be used, when specifying channel 0 (zero), to retrieve
information specific to JavX.

'FONT' Mnemonic.
The 'FONT' mnemonic has been enhanced (for JavX) to allow the client's
look-and-feel to be change programmatically:

PRINT 'FONT'("operator look&feel"),

Where:

FIN(0,"IsApplet") Returns:
"0"=Application or no thin-client connected
"1"=Un-Signed applet
"2"=Signed applet.

FIN(0,"GetClientOS") Returns a string of client OS and OS type; e.g.,
"Mac OS X" "Windows 98".

FIN(0,"GetLookAndFeel") Returns the current look-and-feel GUI used on the
client. Possible values are "windows", "mac",
"motif", and "metal".

FIN(0,"GetParam parm_name")
This form of the function may be used when JavX is
run as an applet. It returns the values of parameters
that are within the tags on the HTML page that JavX
was launched with; e.g.,
webserver$=FIN(0,"GetParam server")

This returns the data associated with the parameter
named server within the tags on the page that
launched JavX.
If the parameter name specified does not exist on the
web page, then Error #65: Window element
does not exist or already exists is
returned. For details, see HTML Reference, p.63.

FIN(0,"GetVMVendor") Returns the JRE vendor.
FIN(0,"GetVMVersion") Returns the JRE version number 1.4.1.
FIN(0,"GetVMName") Returns the JRE name.

operator A ~ tilde sets the look-and-feel for any new windows or dialogues
subsequently created. It does not set the look-and-feel for the current
Window or Dialogue. (This mode is recommended.)

A^caret sets the look-and-feel for previous, current, or
subsequently created windows or dialogues.

2. Client-Server Functionality Standard Thin-Client Behaviour

ProvideX Client-Server Reference Back 25

The typefaces available to the 'FONT' mnemonic are limited to only those fonts that
are directly supported by Java. We recommend that you stay within the standard
Java font list, otherwise you may get unpredictable results. The following
platform-independent font names are supported by all Java applets: Serif, SansSerif,
Monospaced, Dialog and DialogInput.

Also, note that Java does not necessarily display the font names as specified. Instead,
Java maps the logical font names to a physical font that exists on the client
workstation. For example, SansSerif is mapped to the proportional font Arial on a
Windows system. Monospaced maps to the fixed-width font Courier on a Windows
system.

'OPTION' Mnemonic.
The 'OPTION' mnemonic has been enhanced (specifically for JavX) to allow the
following:

• Set the client's look-and-feel to be change programmatically:
PRINT 'OPTION("LookAndFeel","os default"),

• Set the mapFonts flag:
PRINT 'OPTION("mapFont","true"),

If mapFonts=true, then JavX will map physical font names to Java logical font
names. For example, the physical font name "MS Sans Serif" would be mapped to
the logical Java font name "SansSerif". Logical font names map automatically
to the appropriate physical font on any platform where the JAR is installed.
Therefore, "SansSerif" would then be mapped back to "MS Sans Serif" if it were
installed on a Windows platform.

• Set the graphicfontname:
PRINT 'OPTION("graphicfontname","Courier"),

WindX (ProvideX) retrieves the default graphical font from the Windows OS. JavX
has no way of retrieving the OS default graphical font, so historically, JavX has

(This mode is not recommended. Different look-and-feel’s have
different drawing characteristics that can cause improper updates
when changing the look-and-feel of windows, dialogues, and
objects within after they have been drawn.)

look&feel Possible values are metal, windows, mac and motif; e.g.,

PRINT 'FONT'("~metal")

This would change the look-and-feel to metal for any subsequent
windows, dialogues, and objects.

Note: You cannot programmatically control exactly which font is used on the client
workstation. Therefore, since fonts vary from system to system, you should test the
look-and-feel of your ProvideX program on various operating systems. This will help
ensure that you provide a consistent look-and-feel to your GUI screens.

2. Client-Server Functionality JavX vs. WindX

ProvideX Client-Server Reference Back 26

used the text plane font as the default graphical font. This font can be changed
programmatically for each window using the 'GF' mnemonic. Applications that do
not use 'GF', but instead rely on an INI file or the OS default, may look slightly
different in JavX. The graphicfontname parameter allows developers to specify
the default graphical font for all windows.

• Set the graphicfontsize
PRINT 'OPTION("graphicfontsize","14"),

"graphicfontsize" used in conjunction with "graphicfontname", allows
developers to specify a default graphical font name and size. The default graphical
font size is 13 points.

JavX vs. WindX
WindX runs in conjunction with a copy of ProvideX for Windows, so WindX can issue
virtually any command of which ProvideX is capable. On the other hand, JavX uses a set
of Java equivalents to match ProvideX language features – and while JavX permits
ProvideX GUI applications to be run on a wider range of platforms, it cannot replicate
some Windows-specific functionality. However, JavX is deployed without the need for
a local copy of ProvideX.

While most ProvideX applications designed for WindX will work with JavX
interchangeably, there are a few differences to be noted. Each client type (WindX, JavX
SE, JavX AE, or JavX LE) has additional restrictions and/or enhancements. Refer to
Chapter 3. WindX - Windows Thin-Client and Chapter 4. JavX - Java-Based
Thin-Client for functionality that is specific to each of the client platforms.

The following sections provide an overview of the primary differences.

Available in WindX, but not JavX ...

There are no JavX equivalents for the following features that are currently available
under WindX:

1. Calling a ProvideX program across a JavX connection. (CALL "[WDX]…). This
functionality is unique to WindX and is fully documented under [WDX] Remote
Capabilities, p.40. For the most part, the [WDX] tag is ignored by JavX. However,
there are some exceptions that have been specially programmed into JavX, see
Thin-Client Utility, p.28.

2. Local File I/O. JavX only supports local Serial file access; JavX cannot access local
Keyed or Index files.

3. Printing. It is not possible to open *WINPRT* or *WINDEV* to a JavX client. See
Printer Support, p.52, for displaying and printing reports on a JavX client.

2. Client-Server Functionality JavX vs. WindX

ProvideX Client-Server Reference Back 27

4. Parallel or Serial Ports. It is not possible to access a printer port (LPT) or serial
port (COM) on the workstation at this time.

5. Bitmaps. JavX supports JPG and GIF formats, but not BMPs. For more
information, see Image Support, p.53.

6. Format specifications within multi-lines (FMT=) are not yet available.

7. Cross-line and crosshatch pattern fills using the 'FILL' mnemonic are not
supported; however they have been substituted with a gradient fill (explained in
the next section).

If your ProvideX application requires any specific attributes or features that are
currently not available in JavX, please send an email to our support department,
support@pvx.com and inform us of your situation. This will help us prioritize the
enhancements for future releases of JavX.

Available in JavX, but not WindX ...

Along with the advantages of platform independence and the flexibility to run from
within or through a web browser, the JavX design offers several features that are not
available with WindX including:

1. SYSTEM_HELP directive. As an application, JavX executes the SYSTEM_HELP
command by passing the command line to the OS for execution, just as ProvideX
itself would. When JavX is running as an applet there is no command line to pass
the SYSTEM_HELP command to. This means that you cannot start applications,
(i.e., notepad or calc) automatically via the SYSTEM_HELP directive.

However, if the SYSTEM_HELP command begins with HTTP:// , HTTPS://, or
FTP://, then JavX traps the command internally and passes the command to the
browser for execution.

The command may have a suffix to control the "target", which is how the browser
should deal with the URL reference. Suffixes are specified by a ~ (tilde) followed
by either an HTML target reference or a named frame reference if working within
a frames page. If no suffix is specified, then _blank is automatically appended
and used. Valid values for suffixes are:

Note: Specific JavX features are listed and described under Common Functionality
and Limitations, p.48. When the ProvideX server attempts to use an unsupported
feature, it generates an Error #98: Feature not yet implemented.

_blank Browser is to open the URL in a new browser window.
_parent Browser is to load the document in the parent frame or parent

window.
_self Browser is to load the new document in the same frame or window

that JavX is in.
_top Browser is to load the new document in the current browser

window, thereby removing all frames.

2. Client-Server Functionality Thin-Client Utility

ProvideX Client-Server Reference Back 28

A specific frame name targets a named frame window within a frameset.

Example:

SYSTEM_HELP "http://www.pvx.com/~_blank"

This tells JavX to have the browser start a new browser window, and have that
window link to the ProvideX website.

The SYSTEM_HELP command can be used to create complex web pages or
dynamic updates to frames within a web page. It may also be used to
automatically begin a download of a file to the user's desktop via FTP://, and
display the SaveAs or Open selections for the user.

2. 'PICTURE' mnemonic can take a reference to a URL in place of the image file name.

Example:

'PICTURE'(0,0,400,100,"http://www.louvre.fr/img/charte/collec/peint/joconde.jpg")

Thin-Client Utility
The *windx.utl utility program provides several functions that help simplify the
development of applications using WindX and JavX thin-clients; e.g.,

CALL "[WDX]*windx.utl;Get_LWD",Station_dir$
CALL "*windx.utl;Spawn",cmdline$,inifile$,appfid$

The functions supplied by this utility are listed and described below:

CALL "[WDX]*WindX.utl;Get_Addr",x$
Returns the IP address of the client system.

CALL "[WDX]*WindX.utl;Get_ARG",x,x$
WindX only. Returns the command line argument number specified by X in X$.

CALL "[WDX]*WindX.utl;Get_LPG",x$
WindX only. Returns the LPG (Lead Program Name) system value for the WindX
session.

CALL "[WDX]*WindX.utl;Get_LWD",x$
WindX only. Returns the local current disk directory (Last Working Directory) for
WindX session.

CALL "*WindX.utl;Spawn",x$,c$,f$
No [WDX] prefix required. Spawns a new session of ProvideX on the host and an
associated session on the client system. See Launching Multiple Sessions, p.29.

Note: The most common printing method for JavX applications utilizes
SYSTEM_HELP to launch a new browser session where the URL points to a PDF that
is generated on the web server. See Printer Support, p.52.

2. Client-Server Functionality Thin-Client Utility

ProvideX Client-Server Reference Back 29

CALL "*WindX.utl;Spawn_Nohup",x$,c$,f$
No [WDX] prefix required. Same as Spawn but will detach the session from the
main user task. See Launching Multiple Sessions, p.29.

CALL "[WDX]*WindX.utl;Get_WindX",x$
WindX only. Returns the absolute pathname of the WindX program.

CALL "[WDX]*WindX.utl;Get_NewPort",x
Returns the port number of an unused TCP/IP port on the WindX station.

CALL "[WDX]*WindX.utl;Get_TCB",x
Returns the value of the TCB function task specified by X in X; i.e., X=TCB(X).

CALL "[WDX]*WindX.utl;Get_Val",x$,y$
Evaluates/returns value of string expression x$ in y$; i.e., y$=EVS(x$).

CALL "[WDX]*WindX.utl;Get_Num",x$,Y
Evaluates/returns value of numeric expression x$ in y (i.e., y=EVN(x$).

CALL "[WDX]*Windx.utl;get_file_box",path$,dir$

Emulates a local call to GET_FILE_BOX directive.

CALL "[WDX]*Windx.utl;get_file_box_read",path$,dir$

Emulates a local call to GET_FILE_BOX READ directive.

CALL "[WDX]*Windx.utl;get_file_box_write",path$,dir$

Emulates a local call to GET_FILE_BOX WRITE directive.

Launching Multiple Sessions

The Thin-Client Utility can also be used to spawn a new session of ProvideX on the
host, and an associated session on the client. Because this syntax is performed
locally, calls to *Windx.utl;spawn and *Windx.utl;Spawn_Nohup do not
require the [WDX] prefix. The syntax and functionality are slightly different when
used with WindX or JavX. The differences are outlined below:

WindX Syntax
CALL "*WindX.utl;Spawn",x$,c$,f$

Where:

x$ command line parameters to be used on the host.
c$ pathname of INI file to be used on the client PC.
f$ specifies the value of FID(0) for the session.

The following syntax is similar to;spawn but it detaches the session from the main
user task so that if the main task terminates, the spawned task continues executing:
CALL "*WindX.utl;spawn_nohup",x$,c$,f$.

2. Client-Server Functionality Thin-Client Utility

ProvideX Client-Server Reference Back 30

JavX Syntax
CALL "*WindX.utl;Spawn",x$,c$,f$

Where:

x$ specifies the program to run on the host
c$ specifies the window location
f$ specifies the value of FID(0) for the session.

By default, if the main session terminates, the spawned session terminates. When c$
is "#embed", the new JavX session appears in the web browser; otherwise, JavX
creates a new window on top of the browser. When c$ is "#float", the new session
will float in a new dialogue above the existing browser window.

When spawning a new session of JavX in this way, the new session from the same
client workstation does not use any additional ProvideX user slots from the server's
ProvideX license. For more information, see onapplet=true described under
HTML Parameters, p.65.

The following syntax is similar to;spawn but it detaches the session from the main
user task so that if the main task terminates, the spawned task continues executing:
CALL "*WindX.utl;spawn_nohup",x$,c$,f$.

ProvideX Client-Server Reference Back 31

Client-Server Reference WindX

3
WindX - Windows Thin-Client

The WindX thin-client makes it possible to distribute a feature-rich, graphical user
interface to a Windows client from any server-based ProvideX application, even if
the host system does not support that type of interface. It can be deployed as a
stand-alone product or as a freely distributable Plug-In running on Windows
9x-2000/Me/NT4/Server 2003/XP/Vista.

For most implementations, WindX would be launched within a start sequence using
a Windows application shortcut – from that point, the session is completely
transparent to the user. Since WindX is actually a ProvideX program that runs on the
client system, some GUI functionality and file access can be configured for local
handling. Less (graphical) data needs to be carried between the WindX station and
the server, which means faster processing for handling many of the functions
required for window manipulation.

WindX is the most full-featured product in the ProvideX thin-client suite. It can issue
virtually any command of which ProvideX is capable. For a discussion on the full
range of client-server options in ProvideX, refer to the section Choosing the Right
Solution, p.10.

This chapter documents the installation, configuration and functionality of the
WindX thin-client.

Installation and Configuration, p.32
Launching WindX, p.37
WindX Thin-Client Functionality, p.39
Print Management, p.40
Remote Procedure Call, p.42.

Topics

3. WindX - Windows Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 32

Installation and Configuration
Both the standalone and plug-in versions of WindX can be obtained from your
dealer/distributor or downloaded from the ProvideX website, www.pvx.com. Once
you download or copy the installation program to your client computer, follow these
steps to install and activate WindX:

1. If possible, remain connected to the Internet. The installation process may include
some options to download additional components.

2. Double-click on the installation program that was downloaded to your computer
to begin the installation process. The installation program launches an
InstallShield Wizard and immediately checks for any existing versions of WindX.

If an older version of WindX is detected, you will be given the option to
upgrade/overwrite your existing version, or to install the new version in a
different location. If your current version of WindX is identical to the new install,
you will be given the option to modify, repair, or remove the existing components.

The wizard takes you through a series of dialogue boxes:

3. Follow the wizard instructions and click Next > to complete each step. The final
step installs the software onto your hard disk and displays a progress bar to
indicate the current installation status. This process may take several minutes.

4. The InstallShield Wizard will be completed when all components are copied to
disk. If you downloaded the Plug-in, WindX is fully installed at this point and will
skip further steps in the installation process.

3. WindX - Windows Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 33

However, if you downloaded a Standalone version of WindX, the InstallShield
Wizard automatically invokes the ProvideX Activation utility:

• If this is a new installation, a Demo Mode activation is applied automatically.

• If this is a maintenance update for an existing copy of WindX, the activation is
transferred automatically from the original version.

• If this a purchased upgrade, you must establish a new activation for WindX.

The activation for WindX Standalone is performed in the same manner as the
ProvideX Windows Activation. The necessary activation information will be
issued to you when you purchase a product package from Sage Software Canada
Ltd. or your authorized dealer/distributor.
For detailed activation instructions refer to procedures explained in the ProvideX
Installation Manual.

Connection Methods

WindX may be configured to communicate with ProvideX running on Windows,
UNIX, Linux, or Apple Mac OS X servers using either direct TCP/IP, Telnet, or serial
port connections. Once the host system (UNIX or Windows) is set up for network
access, no special software, apart from ProvideX on the host, is required to use the
WindX client. Connections may comprise any combination of:

• Local Area Network (LAN)
• Wide Area Network (WAN)
• Serial, Point-to-Point Protocol (PPP), Virtual Private Networking (VPN)
• Communications security using industry-standard SSL encryption.

Most conventional ProvideX client-server implementations are handled via direct
TCP/IP, using ProvideX's *Nthost or the Application Server on the host system.

Direct TCP/IP Connections

The ProvideX Application Server (or *NTHost/*NTSlave) Hosting Facilities can be
used to provide direct TCP/IP communications for WindX. The client processes for a
WindX direct TCP/IP configuration include:

As mentioned earlier, WindX is launched automatically if *CLIENT or *NTSlave are used
to connect with the host. The configuration is defined within the command line (Target)
syntax. For more information, see Launching WindX, p.37.

*CLIENT Client-side software used to establish a connection to the ProvideX
Application Server running on the host machine. See Chapter 5.
Application Server for complete documentation.

*NTSlave Basic process for connecting WindX to the host system. The default
configuration is explained under Using *NTHost/*NTSlave, p.18.

3. WindX - Windows Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 34

Telnet/Serial Configuration
Conf iguration Settings

A default console is available for setting up and accessing Telnet and Serial COM port
connections. The console can be invoked from within ProvideX on the client; e.g.,

-> run "windx/windx

The WindX install provides a Windows shortcut with command line (Target) syntax,
similar to the following:

"c:\pvx\pvxwin32.exe" windx

The splash screen for the WindX Telnet/Serial console appears as follows:

Click on Settings in the menubar at the top of the console to open the configuration
screen. The configuration settings allow you to choose the connection type (Serial COM
port or Telnet) and set different operational parameters:

3. WindX - Windows Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 35

Options are saved in the default file windx.cfg or in the file specified in ARG(1), if set.
This is a ProvideX Serial file containing one record with a SEP between each field.
Different configuration files can be used as required. The following syntax saves the
configuration options to the file my.cfg:

"C:\pvx\pvxwin32.exe" windx -arg my.cfg

When selecting a COM port, the user must specify the port speed and enable the
hardware flow control, if necessary.

Connecting Via Telnet
If you choose to connect via Telnet, then you must enter the name and/or IP address
of the targeted host computer. Several other configuration options are available:

Port Normally, port 23 is used with Telnet communication;
however, this can be changed if necessary.

Terminal Type The ability to specify a Terminal Type when connecting to
a UNIX server was introduced in version 5.01.

Translate CR /
Send CR as LF

The Translate CR and Send CR as LF options handle minor
variations in the protocol that have been found to exist
between vendor implementations.

Force ACKs The option to Force ACKs (Forced Communications
Acknowledgments) may help improve the performance of
WindX when in Telnet mode. It periodically adds a few
bytes of data to the packets sent by WindX in an attempt
to force the Telnet daemon (telnetd) on the server to
communicate faster if it is using the Nagle algorithm
(which produces delays in transmission). Most telnetd
servers are configured to use this algorithm automatically.

By enabling this feature, WindX sends a few bytes that
force an immediate response from the server, which
triggers any pending data on the server to be sent
immediately. Not all Operating System Telnet Daemons
support this feature. Whether this option will have a
positive or negative impact on performance can only be
determined through testing.

Encrypt w/SSL The option to Encrypt with SSL allows WindX to
communicate with Telnet daemons which have SSL support,
such as those using an SSL wrapper on the server.

The Standalone WindX must be activated for SSL before
this feature can be used. The WindX Plug-In does not
require any special activation for SSL.

3. WindX - Windows Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 36

Automated Sign-on
There is also a built-in script processor within WindX which can be used to dial a
phone and/or generate a host sign-on sequence. The script text consists of a series of
lines which starts with a single character code followed by a colon.

The script consists of a series of lines each of which contains a single letter
identifying the command, a colon, and the command parameter:

The T: command can be used to change the default timeout value (5 seconds) used
for a R: (receive) function. W: causes the script to wait the number of milliseconds
specified. If the first command of a WindX script is M:, then all terminal output is
suppressed allowing for a 'hidden' sign-on. Terminal output resumes automatically
at the end of script.

For example, the following sign-on script for UNIX suppresses the login so the user
would not see the user ID and password:

M:Starting host connect
R:login
S:Stitch
R:Password
S:Lilo
R:$
S:/pvx/pvx MYMENU

Connect Script
While the script processor is sufficient for many situations, an external sign-on
program can also be used to alter the script sequence dynamically. If the option Use
External Sign-on is enabled on the configuration screen, then WindX will issue a
CALL to the program named windx.sgn just prior to processing the sign-on script.
This program can alter the script as desired.

Use Keepalives The TCP Keepalive option informs ProvideX whether or
not a client is still communicating with the server.

Exit on Quit /
Ignore Turbo Mode Errors

This option causes WindX to auto-terminate once the
connection with ProvideX is severed. Local reporting of
Turbo mode errors can be suppressed as well.

R:xxxxx Wait to receive xxxxx in the Data flow or Timeout
S:xxxxx Send xxxxx to host followed by a carriage return (The Enter key)
W:nnn Wait nnn milliseconds
T:nnn Change reception timeout value to nnn seconds.
M:xxxx Display xxxx on the status bar to advise user of state

3. WindX - Windows Thin-Client Launching WindX

ProvideX Client-Server Reference Back 37

For example, if a NOMADS screen (Signon in Mylib) requests a user ID and
password, the windx.sgn program can be used to alter these fields in a script:

0010 enter s$
0020 process "Signon", "Mylib.en",u$,p$
0030 u=pos("$user$"=s$)
0040 if u<>0 s$=s$(1,u-1)+u$+s$(u+6)
0050 p=pos("$pswd$"=s$)
0060 if p<>0 s$=s$(1,p-1)+p$+s$(p+6)
9000 exit

This example assumes that the value $user$ and $pswd$ exist as placeholders in
the script and will be replaced with the true user ID and password.

Launching WindX
Once WindX is installed on the client system and is configured to access the host, it
can be launched to establish a connection with the server-based ProvideX system.
The WindX launch procedure differs slightly depending on the connection type, the
hosting facility, and the intended application.

The command line syntax for launching WindX can be customized in several ways
for various purposes. For example, if WindX was configured for a Telnet/Serial
Configuration, it might be launched as follows:

"C:\WindX V7.00 Standalone\pvxwin32.exe" windx -arg my.cfg auto

This automatically launches a WindX session and applies the saved configuration
file, my.cfg. The command line syntax for launching WindX using a direct TCP/IP
connection is explained in the sections Application Server *CLIENT Program and
ProvideX *NTSlave Program below.

INI Files and Shortcuts
As with any ProvideX application, the WindX launch sequence and various
application properties can be customized and packaged into initialization (INI) files
for controlling system resources and for defining how the application will be
presented to the user. WindX may be set up to be launched from a Windows shortcut
by placing the command string in the Target field; e.g.,

"c:\pvx\pvxwin32.exe" c:\myapp\myapp.ini *ntslave -ARG ...

This automatically launches WindX for use with *NTSlave on the client system.

3. WindX - Windows Thin-Client Launching WindX

ProvideX Client-Server Reference Back 38

Application Server *CLIENT Program
*CLIENT

This software is used on the client workstation to establish a connection to the
ProvideX Application Server running on the host machine. It is also used by the
spawning process to initiate new sessions on the client workstation. *CLIENT can
also be customized to provide a user interface for connecting to the application
server. Chapter 5. Application Server includes a Sample Setup Procedure that
illustrates use of *CLIENT launching WindX from a shortcut.

The command line (Target) syntax for launching *CLIENT from a Windows shortcut
is described as follows:

PVXpath$ [state] [ini] *CLIENT –ARG ServName [Socket] ["App"] [parms]

Where

Example
The following command line uses *CLIENT to connect to the ProvideX Application
Server running on IP address 10.100.22.243 (at socket 15000) and then runs the
configured application on the server called "myapp".

"C:\PVX\pvxwin32.exe" *client -ARG 10.100.22.243 15000 "myapp"

PVXpath Path to ProvideX

state Option setting for governing the initial WindX window. Either null for
normal window, -mn to start minimized, –hd to start hidden.

ini Optional user-defined INI file. The initial session will use this INI for
its client-side ProvideX characteristics. Spawned sessions will re-use
the same INI, unless specifically overridden during the spawn.

–ARG Keyword marking the start of the argument list.

ServName IP Address or DNS resolvable name of the server to connect to.

Socket TCP/IP port (socket) that the server daemon is listening to. The
default is 10000.

"App" Optional lead program or configured application name that the server
is to run. Quotes are required if it contains spaces. If Null or not given,
then the request is for a ProvideX Console Mode Session.

parms Optional dashed parameters: -FID=xxx -DIR=xxx -CMD=xxx
-ARG=xxx -SSL -LOGIN -KA -LANG=xx -USR1=xxx -USR2=xxx
-USR3=xxx -USR4=xxx. For full details, see *CLIENT Dashed
Parameters, p.108.

3. WindX - Windows Thin-Client WindX Thin-Client Functionality

ProvideX Client-Server Reference Back 39

ProvideX *NTSlave Program
*NTSlave

*NTSlave provides a more basic connection for WindX to communicate with the host
system. This process connects to any server running *NTHost, whether it is Windows,
UNIX, or Linux. This makes it possible to have many shortcuts connecting to different
servers, all running at the same time. Refer to the default client-server configuration
explained under Using *NTHost/*NTSlave, p.18.

The command line (Target) syntax for launching *NTSlave from a Windows shortcut
is described as follows:

PVXpath$ *NTSlave –ARG server prog port

Where:

Example
The following command line uses *NTSlave to connect to NTHost running on IP
address 10.100.22.243 (at socket 15000) and then runs the ProvideX program called
"myapp" on the server.

"C:\Program Files\Sage Software\WindX V7.00
Standalone\pvxwin32.exe" *ntslave -ARG 10.100.22.243
"myapp" 15000

WindX Thin-Client Functionality
Once ProvideX determines that it is dealing with a WindX implementation, it
automatically routes all graphical directives and functions from the server program
to the client. Little or no code changes are required to move GUI processing over to
the WindX client, but the server application does need to recognize the existence of
the WindX session.

The methods for detecting WindX (and JavX) involve checking the MSE variable and
checking the value returned in TCB(88). For Telnet connections, ProvideX uses
terminal type (TERM=) to detect the WindX session.

PVXpath$ Path to ProvideX

–ARG Keyword marking the start of the argument list.

server Either the IP address of the host system where *NTHost is
running or the host name of the server.

prog Name of program to run. If "" empty quotes are specified
(no program name) then the session starts from the default
ProvideX console.

port TCP/IP socket number that *NTHost is monitoring.

3. WindX - Windows Thin-Client WindX Thin-Client Functionality

ProvideX Client-Server Reference Back 40

The methods for determining the existence of an active thin-client are explained in
the section Standard Thin-Client Behaviour, p.21.

[WDX] Remote Capabilities

Because WindX is itself a ProvideX program, it has full access to local ProvideX
functionality along with the ability to maximize resources on either side of the
client-server connection. WindX implementations are able to take full advantage of
the latest ProvideX features with a simple upgrade of the local copy of ProvideX.

Through WindX, the host application is able to access files, execute code, and launch
applications installed on the client system. This allows programs and files to be
distributed in such a way that processing logic is executed on the same system as the
data, which reduces processing time, accelerates throughput, and increases overall
system performance.

Access to the client system is invoked by using the [WDX] prefix in statements on
the server-side application. However, remote processing is only possible if a given
command works on both client and server systems, and if it supports use of the
[WDX] special command tag. The [WDX] tag enables the following functionality
across a WindX connection:

• Initiate remote commands via EXECUTE and INVOKE.
• CALL a subprogram that exists and runs remotely on the client
• Open remote serial ports and forward I/O directives for processing
• Direct printing to the client or server system via *WINPRT* and *WINDEV*.
• Create and manipulate OOP/COM objects.
• Invoke thin-client utilities via WindX.utl.

When programming for WindX functionality, it might be advisable to create a global
string variable with the value [WDX] to be implemented when WindX is detected.
This global string variable can then be used to prefix any commands that you want
to be executed locally; e.g., invoke %wdx$+"notepad.exe".

Print Management

The *WINPRT* and *WINDEV* special device files are specific to the Windows
operating system and will be opened on any Windows system (server) that issues
the command. However, from a UNIX or Linux server, ProvideX automatically
directs printing to the WindX client; e.g.,

OPEN (14)"*winprt*" ! For the PC client from UNIX host.

Note: The syntax for the above remote actions is fully documented under the heading
[WDX] Direct Action to Client Machine in the ProvideX Language Reference.

3. WindX - Windows Thin-Client WindX Thin-Client Functionality

ProvideX Client-Server Reference Back 41

To direct print jobs and dialogues to the client PC, use [WDX] with OPEN [INPUT]
directives for the two special device files. The client will in turn use its Windows
print subsystem API to deal with the jobs and send them to the given printer; e.g.,

OPEN (7,ERR=1500)"[WDX]*WINPRT*"

With a WindX client and an NT Server, if you do not use [WDX] in your OPEN
directive, then the printer selection dialogue will appear on the server console, and
any print queue you name directly must exist on the Windows server in the Control
Panel printers folder.

Local File Access

To access files on the client workstation, the pathname specified on an OPEN or file
creation/ deletion directive simply has to include the [WDX] tag; e.g.,

OPEN LOCK (1) "[WDX]A:\PAYROLL.DAT"
READ RECORD (1,END=END_DATA) R$
...
END_DATA: CLOSE (1)

By specifying [WDX}A:\PAYROLL.DAT, the host application will actually be given
access to the file A:\PAYROLL.DAT on the workstation. To create a file on the
workstation, simply issue a command such as:

SERIAL "[WDX]C:\MyData\TESTDATA"

This creates the serial file C:\MyData\TESTDATA on the workstation.

Local Command Processing

In addition to remote file access, the INVOKE, SYSTEM_HELP and EXECUTE
directives support the ability to be processed locally on the workstation. If the string
parameter passed to either of these directives starts with the sequence [WDX], then
the rest of the command is passed on to WindX to execute locally.

Example:

INVOKE "[WDX]EXCEL C:\MyData\Budget2006.XLS"
SYSTEM_HELP "http://www.pvx.com"

The most common uses for issuing a remote EXECUTE include:
• Changing local directory
• Changing system parameters
• Changing the Prefix

Note: Refer to syntax descriptions of *WINDEV* Raw Print Mode and *WINPRT*
Windows Printing in the ProvideX Language Reference.

3. WindX - Windows Thin-Client WindX Thin-Client Functionality

ProvideX Client-Server Reference Back 42

• File creation

Remote Procedure Call

One of the more powerful features of WindX is its ability to execute ProvideX
subprograms remotely. Since WindX itself is a ProvideX program, it is capable of
calling and passing parameters to a local sub-program. To CALL a program to be run
on the WindX workstation simply prefix the program name with [WDX]. This
indicates that the specified sub-program is to be run on the local PC, not the host
system. Remember that the program being called must exist on, or be accessible
from, the client PC.

Any arguments specified in the CALL are sent to the WindX PC and any changes are
passed back as per normal CALL processing. There is a limit of twenty (20)
arguments that can be specified in a remote CALL.

It is important to remember that the called program is actually running on the client
workstation, not on the host system that initiated the CALL. Only the variables that
have been passed specifically on the CALL argument list are accessible. Global
variables and files are not accessible to called programs.

*windx.utl Utility Program

WindX (and JavX) include a general purpose utility program called *windx.utl that
supplies a number of commonly needed functions, such as getting the current
directory or workstation address. It also has an entry point that allows you to spawn
a new session of ProvideX on the host and an associated WindX session on the client
system.

A complete list of the available *windx.utl functions and syntax descriptions is
provided under Thin-Client Utility, p.28.

Note: When using EXECUTE remotely, it is possible that the client system is running
ProvideX with different syntax tables, which could result in the directives being incorrect.

ProvideX Client-Server Reference Back 43

Client-Server Reference J avX

4
JavX - Java-Based Thin-Client

JavX offers a platform-independent thin-client for displaying and interacting with
your server-based ProvideX applications. With JavX, your applications can be run
via any web browser anywhere, as well as on an increasing number of J2ME-enabled
mobile/handheld devices.

Three editions of JavX are currently available to best serve the requirements of your
target platform (PC/workstations, mobiles/handhelds, and embedded devices):

• JavX SE (Swing Edition) designed for desktop systems that run the Java 2 Standard
Edition (J2SE) runtime environment — this includes Windows, Linux and UNIX
X-Windows, and Apple Mac OS X systems. See JavX for PC Platforms, p.60.

• JavX AE (AWT Edition) designed for small devices that run the Java 2 Micro Edition
(J2ME) Constrained Device Context (CDC) Personal Profile — this includes a
variety of personal digital assistants (PDAs). See JavX for Portable Devices, p.73.

• JavX LE (Light Edition) designed for task-specific devices that run the J2ME CDC
Foundation Profile — this includes a range of consumer products, automotive and
other interactive components. See JavX for Portable Devices, p.73.

For a discussion on the full range of client-server options, refer to the section
Choosing the Right Solution, p.10.

This chapter starts with information that applies to all JavX editions and is then divided
into sections that discuss the functionality that is specific to each of the client formats.

Installation and Configuration, p.44
Launching JavX, p.46
Common Functionality and Limitations, p.48
JavX for PC Platforms, p.60
JavX for Portable Devices, p.73.

Note: JavX LE is currently not available for direct download; however, developers are
welcome to contact Sage Software Canada Ltd. to request a copy.

Topics

4. JavX - Java-Based Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 44

Java Runtime Environment
All JavX editions (JavX SE/AE/LE) run within a Java Runtime Environment (JRE)
that has been created for each of the target PC and device platforms. A JRE contains
the Java Virtual Machine, Java core classes, and any supporting files needed to run
Java applications.

The JavX SE thin-client requires a Java 2 Standard Edition (J2SE) JRE. Many
operating systems, hardware packages, and web browsers come with Java 2 fully
installed and may not require any further downloads. Automated tools can be used
to install the required runtime environments along with the JavX JAR. When
Launching JavX as an Applet, then HTML code and Java script can be used within
a web page to automatically download/install the JRE (if it is required). These
runtime requirements are further described in the section JavX for PC Platforms, p.60.

The JavX AE and JavX LE thin-clients require Java 2 Micro Edition (J2ME) JREs. J2ME
delivers a reduced set of the Java core classes and it has been adapted for use in
constrained/embedded devices. These runtime requirements are further described in
the section JavX for Portable Devices, p.73.

Installation and Configuration Downloading/Installing J avX

JavX components and utilities are downloadable for direct installation from the
ProvideX website at www.pvx.com.

As mentioned earlier, no additional host software is necessary, apart from ProvideX–
but some preparation is required to ensure that JavX is installed and deployed
successfully for communication between the host and client sides of your
applications. Depending on the implementation, the client requirements, and the
available Java Runtime Environment (JRE), JavX may be deployed either as a Java
application (permanently installed) or as a Java applet (downloaded as needed).

Developers who are new to the Java environment should refer to the JavX
Developer’s Kit, before they attempt to install and/or launch any version of JavX.

JavX Distribution Format (JAR Files)
JAR

All JavX installations are distributed in JAR (Java ARchive) file format, which is a
compressed archive that may be opened using any ZIP-compatible software. In fact,
the only file used to install any edition of JavX is the JAR itself, either JavXSE.jar,
JavXAE.jar, JavXLE.jar.

Note: Visit www.java.com or www.java.sun.com to learn more about the Java
concepts (and terminology) being used in this documentation.

4. JavX - Java-Based Thin-Client Installation and Configuration

ProvideX Client-Server Reference Back 45

Each JAR contains all of the compiled classes and files that constitute that edition of
the JavX application. At runtime, the application can be deployed either as a Java
applet, where the JAR is loaded temporarily into the client browser’s cache, or as an
installed application, where the JAR is kept permanently on the client machine.

JavX does not require that the JAR be named JavX[SE/AE/LE].jar. Use a name
that is relevant to your application. You can also add your own items to the
distributed JAR; e.g., custom GIF or JPG files can be added to the JAR to be used as
internal images in your application.

JavX Developer’s Kit

The JavX Developer’s Kit is designed to help you get started developing applications
for JavX. It contains the following items:

• A shortcut to launch JavX[SE/AE/LE] as an application with a connection to
ProvideX's *Nthost facility (running on the local machine on socket 10000).

• A shortcut to launch JavX[SE/AE/LE] as an application and connect to the
ProvideX Application Server (running on the local machine on socket 10000).

• A folder containing the Web Page Configuration program (Javxpagegen.pvs) and
its documentation. This is an easy-to-use program for building web pages that will run
JavX as an applet. For more information refer to the Web Page Generator, p.70.

• A folder containing all JavX documentation, including this document and
documentation on using the Web Page Configuration program.

• The three different JAR files for JavX SE, JavX AE, and JavX LE.

• Optional Java 2 Runtime Environment (JRE). All three versions of JavX will run in
the J2SE JRE. We recommend that you select the Java VM/JRE option when:

• you are not sure that your system has the appropriate JRE

• you are installing JavX for the first time.

Note: When you add items to the distributed JAR, it is probably best that you rename
the changed file to avoid any possibility of it being overwritten by a subsequent
download. Also, ensure that web page references point to the new file name.

Note: The JavX Developer’s Kit is freely downloadable from www.pvx.com. Versions
of the kit are available for almost every platform. JavX licensing requirements apply.
See Licensing ProvideX Client-Server Facilities, p.13.

4. JavX - Java-Based Thin-Client Launching JavX

ProvideX Client-Server Reference Back 46

Launching JavX
This section provides general information and procedures for Launching JavX as an
Application and Launching JavX as an Applet. Procedures that are specific to JavX
SE are provided in the section JavX for PC Platforms, p.60. Procedures for launching
JavX AE and JavX LE on a device are provided in the section JavX for Portable
Devices, p.73.

Launching JavX as an Application

When JavX is run as an application, the distributed JAR will be installed directly on
the workstation or device, and JavX has local access to the client system with no
imposed security restrictions. Utilities such as InstallShield or InstallAnywhere can
be used to create a custom routine for automating the installation procedure. The
following syntax launches JavX as an application from the command line:

JavaLaunch -Jar Javx.jar ArgString$

Where:

The following are different examples of JavX being launched via the command line:

java -jar JavXAE.jar "server=127.0.0.1; port=10000;"

This launches an instance of the JRE. It tells JavX to connect to the local machine that
is listening on port 10000 and to sit at a ProvideX command line prompt rather than
run a program.

java -jar JavX.jar "server=www.pvx.com; port=11000; program=*nomads;"

This launches the JRE, connects to *NTHost, then runs NOMADS after connecting to
port 11000 on the server located at www.pvx.com.

java -jar JavXSE.jar "server=www.pvx.com; port=11000; program=*nomads;
applicationserver=true; ssl=true;"

This launches the Java Run-Time, connects to the ProvideX Application Server on a
secure socket, then runs NOMADS after connecting to port 11000 on the server
located at www.pvx.com.

java -jar JavX.jar "server=66.46.24.226; port=31000;
ConnectString=V2|mydir/myprog -ARG value1|T0|pvxuser|;"

JavaLaunch The appropriate Java program to run a jar file. Most commonly
named either java or javaw (on some windows platforms).

ArgString$ Variables to be passed from the command line in one string delimited
by ';' (i.e., "server=pvx.com; port=10000;"). The required and
optional arguments are described under HTML Parameters, p.65.

4. JavX - Java-Based Thin-Client Launching JavX

ProvideX Client-Server Reference Back 47

This connects JavX to the server at 66.46.24.226 (ProvideX WebServer) on socket
31000. The program to run is set to null since the program is specified in the
ConnectString. All pipe symbols in the ConnectString are substituted with
$8A$, then the entire string is sent to the server. JavX waits for a response that
consists of the socket number on which the server will run the requested program.

Launching JavX as an Applet

Currently this option is only available under JavX for PC Platforms, p.60. When
JavX SE is deployed as an applet, the JAR is not installed permanently on the client
workstation, but is delivered (as needed) via web server to the client’s web browser.

The JavXSE.jar file must be made accessible from a website and the web server
should have the correct mime types for Java files: .jar (application/octet-stream)
and .class (application/x-java-applet).

The JavX applet occupies a rectangular region on the web page. These regions are
defined by the <APPLET>, <OBJECT>, or <EMBED> settings within the HTML. When
a browser encounters these settings, it identifies the applet and its location then loads
and runs the applet. If a copy of the applet is not cached on the local system then it
automatically downloads it from the website.

Launching JavX Clients without Arguments

JavX can be run without passing arguments at startup by including a Java property file
called JavX.properties to the JavX JAR. This is simply a text file with each argument
specified on a separate line. If no arguments are passed to JavX, it automatically attempts
to open and read JavX.properties. For example, if JavX.properties contained
the following, it would cause JavX to connect to an instance of *NTHost listening on
Socket 10000 on the local machine:

This File will pass the following "args" string to JavX:
"server=localhost; port=10000;"
server=localhost
port=10000

In the above JavX.properties file, the lines starting with a # are comments and the
arguments are not delimited by semi colons. When passing arguments from a
command line or on an HTML page the arguments are delimited by semi colons.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 48

Common Functionality and Limitations ProvideX Thin- Client Functionality

Fundamentally, JavX can be considered a Java version of WindX. While WindX is
written in ProvideX (which is written in C), JavX is written entirely in Java.
However, because it is Java-based, JavX offers a platform-independent solution for
displaying and interacting with ProvideX host applications. With JavX, applications
can be run via any web browser anywhere, as well as on an increasing number of
J2ME-enabled mobile/handheld devices.

While JavX may not possess every feature available under WindX and ProvideX, its
Java-based design offers several clear advantages:

• Simpler World Wide Web application.
• Platform independence.
• Look-and-Feel flexibility.
• Runs without local ProvideX requisite.
• High speed communications.

JavX is not a ProvideX program so it can be deployed on any system without the
need for a local copy of ProvideX. When programming for JavX as an applet, nothing
is required on the client machine but a web browser and a Java2 JRE. The user
simply navigates to the web page that contains JavX and the applet is sent to the
browser. If the browser is closed, then the session is terminated.

ProvideX Features not Supported in JavX

JavX architecture has the following limitations in addition to those described in the
section JavX vs. WindX, p.26. These features are not supported by any of the JavX
client formats. For functionality that is specific to each of the client formats, refer to the
sections covering JavX SE or JavX AE/LE.

Buttons. The following limitations apply to use of the BUTTON, RADIO_BUTTON,
CHECK_BOX, TRISTATE_BOX directives:
1. The property 'BitmapPosition is supported, but not completely. This property can

be set to 1 (left of text) or 2 (right of text); however, 3 (above text) and 4 (below text) are
not supported in JavX. For more control over images on buttons, use HTML for
the text. For more information on using HTML on buttons, see Language
Enhancements for Thin-Clients, p.23.

2. Button text is not wrapped automatically when it is too long; however, the text
will be wrapped using HTML. For example,

BUTTON 10,@(5,5,5,5)="This Text is Too Long"

This would be truncated as "This…" depending on the font size specified.

Note: If you are programming with JavX for the first time, we recommend that you
download and install the JavX Developer’s Kit, p.45.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 49

BUTTON 10,@(5,5,5,5)="<html>This Text is Too Long</html>"

This wraps the text as expected.

3. The OPT= options "O" (Steal Focus) and "s" (Scroll) are not supported.

List boxes. The following limitations apply to use of the LIST_BOX directive:
1. When creating a Listview list box (OPT="l"), JavX does not support the format

definition, sorting, and load-on-demand options. If the formatting (FMT=) option
is specified, then JavX will create a vertically-scrolling list box (and sort will be
supported).

2. The OPT= options "E" (Edit Mode) and "V" (Full Row highlight) are not supported.

Multi-lines. The following limitations apply to use of the MULTI_LINE directive:
1. Formatted multi-lines are not supported; e.g., a format mask of "###" specified by
FMT="###", is ignored in JavX and alphanumeric characters could be entered by
an end user. Applications requiring format masks on multi-lines must apply the
format on the server side.

2. The following OPT= options are not supported:
"#" (Implied decimal point) "!" (Support for Arabic characters)
"C" (Centre the input) "F" (Full)
"H" (Hide) "i" (Suppress implied decimal)
"I" (Activate implied decimal) "R" (Right Justify)
"s" (Scroll)

Grids. The GRID directive has limited functionality under JavX. It is effective as a
view (in JavX SE) but does not respond to input exactly as it does in ProvideX.
Applications that are designed to use grids for data input may not respond as
expected and should be adapted for use in JavX.

The following limitations apply to use of the GRID directive:
1. Some GRID properties are not supported: AutoSequence, ImpliedDecimal,

SepLoad, LockColumns, Len, CellTag, FillColour, CellImpliedDecimal,
CellFormat, InsDelEnabled.

Use the following flag to ignore (not report) non-essential grid errors:

 PRINT 'OPTION'("REPORTGRIDERRORS","FALSE")

This causes the grid to not report an error when setting any of the unsupported
attributes listed above.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 50

2. The following Cell Types appear as a simple check box:

The following Cell Types are not supported: "Query", "QueryHideBtn",
"EllipsisDrop", "VarDropBox", "VarDropBoxHideBtn",
"UseTextNormal", "UseTextSingleLine", "UseTextEllipsis"

Chart. JavX does not support the CHART directive at this time.

Local File I/O. Sequential serial files (without ISZ= specified). In ProvideX, the KEC(),
KEF(), and KEL() functions are valid on a sequential file, but not in binary file access.
In JavX, these return an Error 98: Feature not yet implemented.

Menus. Images cannot be added to menu items (MENU_BAR or POPUP_MENU
items). A menu item with an image will function but the image will not be visible.

Mnemonics. The following OPT= attributes are not supported for the 'DIALOGUE'
and 'WINDOW' mnemonics:

The '4D' mnemonic works in JavX to draw XP-style frames; however, because JavX is
designed to run on a wide variety of platforms, the appearance of GUI components
is not controlled by the '4D' mnemonic but by the current Look and Feel. The
application will only show XP-style controls and frames if the '4D' mnemonic is set,
and the current Look and Feel is set to "Windows" or "OS default". The FRAME
mnemonic will have an XP Look and Feel (blue coloured rectangle with rounded
corners) on any platform, but GUI components (e.g., buttons) will only look like XP
if JavX is running on a Windows XP platform; i.e., JavX will not have an XP Look
and Feel on an Apple OS X system.

For an in-depth discussion on this topic, refer to article entitled Java Look and Feel
Design Guidelines on Sun’s Java website: http://java.sun.com/products/jlf.

"CheckBoxRaised" 3D check box that looks raised
"CheckBoxRecessed" 3D check box that looks recessed.
"CheckMark" Check box that uses a check mark.
"CheckMarkRaised" Raised check box that uses a check mark.
"CheckMarkRecessed" Recessed check box that uses a check mark.

& Ampersand - creates a window that logically attaches to the current
window (i.e., leaves the current window active and shares controls)

* Asterisk - creates a resizable window with automatic scrollbars for text
plane; e.g., PRINT 'DIALOGUE'(1,1,60,20,"Title",OPT="*")

^Caret - window is always on top (not applicable to the 'WINDOW'
mnemonic); e.g., PRINT 'DIALOGUE'(1,2,30,3,"My Top
Dog",OPT="^").

C or X Disable close button.X

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 51

[WDX] Tag Support

As previously mentioned, because it is written in Java rather than ProvideX, JavX is
not able to match every feature available to WindX. JavX does not run under ProvideX
on the local machine, and the [WDX] tag is generally ignored. However, for
compatibility purposes, it can emulate some [WDX] functionality.

To emulate a local ProvideX program call, simply add the name of the program to be
called plus a return value to the JavX.properties file or to the argument string that is
to be passed to JavX at startup.

Examples:
A ProvideX program running on the server executes the following:

Call "[WDX]myLocalProgram;getUser",retVal$

The following entry in the JavX.properties file would emulate the ProvideX program
by simply returning JavXUser.

myLocalProgram,getUser=$JavXUser

Note that the comma is used in the properties file rather than a semi-colon. This is
because JavX uses the semi colon as a delimiter when handling the argument string.
JavX maps commas in the argument string to semi-colons when calling local
ProvideX programs. Also notice that the value JavXUser is proceeded by a $ dollar
sign to indicate that this value should be returned to the ProvideX host program as a
string.

Usually a static value is not required by your application. Typically the value must
be retrieved or calculated dynamically on the client machine. When static mapping
of a program name and routine to a variable is not sufficient, it is possible to call a
Java class and method. For example, a ProvideX program running on the server calls
a local program called *WIN/COLOUR to retrieve a color value selected from a palette
on the WindX workstation. In JavX, the *WIN/COLOUR program does not exist, but a
Java class called MyColorChooser that displays the Java colour chooser object does
exist. The following example loads and instantiates the Java class MyColorChooser
and call the method getColor:

*win/colour=[java]myjavaPackage.MyColorChooser.getColor()

The [java] tag tells JavX not to simply return a string variable, but rather to
instantiate the class MyColorChooser, and return the value returned by the method
getColor().

This is not an ideal way to interface with Java classes because the handle to the class
being loaded is not retained, and only one method can be called. To call multiple
methods the class would have to be instantiated multiple times. The preferred method
of interacting with third party Java is via the ProvideX OCX/ActiveX Interface. For
more information, refer to the ProvideX COM Interface and JavX, p.55.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 52

*windx.utl Utility

JavX supports use of the thin-client utility program called *windx.utl. It also
supports the syntax and functionality for spawning a new session of ProvideX on the
host and an associated JavX session on the client system. A complete list of the
available *windx.utl functions and syntax descriptions is provided under
Thin-Client Utility, p.28.

Printer Support

End users expect to be able to print to printers that are attached to their local
machines. However, unlike WindX, JavX does not allow that level of access to the
local system. If the host application is set up to do so, it may allow print requests to
be directed to somewhere on the server side of the network, but the JavX client does
not have access to any of the print facilities on the user’s machine itself.

Alternative Printing Solution
However, it is not difficult to implement alternative printing solutions. One solution
for printing web content is based on Adobe Acrobat. It uses the SYSTEM_HELP
directive with JavX to launch a new browser session, where a URL points to a PDF
document created on the server. The client workstations can have their browser
retrieve the generated PDF. When it is opened in Adobe Reader, it can then be
printed to the local printer. The following steps make this possible:

1. On the server, install the full version of Adobe Acrobat, which then adds its own
printer driver Adobe PDFWriter for generating PDFs.

2. Create a new ProvideX device driver that:

• Creates a file name for the PDF document, with a path to a directory accessible
to the web server.

• Opens *WINPRT* directly to the Adobe PDFWriter printer, and pass it the
generated file name using a FILE= clause; e.g.,
open (channel)"*winprt*;adobe pdfwriter;file=c:\...\docs\xxxa.pdf"

• Sets the '*X' mnemonic in the device driver to call the device driver again at a
routine called OnChannelClose when the channel is closed:
MNEMONIC(channel)'*X'=PGN;"OnChannelClose;URL=http://www..."+filename$

• Contains a routine at the end of the device driver with the label OnChannelClose.
This logic should parse the URL=data$ returned using data$=MNM('*X*',channel)

• Issues a SYSTEM_HELP command to the URL required for a connection to the
web server.

The '*X' mnemonic is used to call a program when the channel is closed. This
program issues a SYSTEM_HELP command that causes JavX to launch a new
browser session that downloads the PDF automatically. Because the file is being
viewed through Acrobat Reader, a standard plug-in for most browsers, the user will
be able to print it to any local printer.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 53

More complicated URL requests could be used, such as an HTTPS request to transmit
the file using SSL encryption. Also, the request could be sent to a CGI or ProvideX
web program with additional information, such as a USERID and PASSWORD to
access a particular report, rather than being sent directly to the PDF location. That
program could validate the user request and decide whether or not to make the
report available to the person attempting to download it, which in this case would
be the person using the particular JavX connection.

Image Support

In ProvideX, an image used by a thin-client must be available to the thin-client itself
and may come from several sources:

• An internal bitmap; i.e., the image name starts with an ! exclamation mark. Internal
bitmaps may come from the *BMP directory on the client, a resource DLL on the
client, or from within the ProvideX executable on the client.

• A filename that is resolvable from the client's point of view, such as a local hard
disk or a networked mapped drive.

In JavX, displaying images is more complicated due to the fact that Java does not
display bitmaps and because JavX does not have access to the local file system when
run as an unsigned applet. While JavX must retrieve images in a different manner
than standard ProvideX, the basics are similar. The image must still be available to
JavX itself, and may come from internal or external sources.

The following instructions apply both to the { } images named in a GUI object (e.g.,
{!STOP}), and to image names used in the 'PICTURE' mnemonic.

Internal Images.
Internal images are images whose names start with an ! exclamation mark. To find an
internal image, JavX first resolves the image name. If the internal image name does not
have a file extension, then .GIF is appended to the image name and the name is forced
to lowercase. If a file extension is specified then JavX maintains the case used.

Examples:

!STOP will become "stop.gif"
!MyPict.jpg will become "MyPict.jpg"

JavX then tries to locate the image. The JavX JAR file is scanned first for the internal
image name (without the exclamation.) and, if found, it is displayed. If the image is not
found within the JAR file, then JavX will use one of two approaches to find the image
depending on whether it is running as an application or applet. For information on
adding your own internal images, see JavX Distribution Format (JAR Files), p.44.

Note: JavX only supports image formats that are supported by Java; i.e., Java does not
support .bmp format.

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 54

If JavX is running as an application, then it will look for the image as a file on the
local hard disk. JavX takes the directory name where its jar file is located, appends
the image name to it and attempts to open that file; e.g.,

Image name is: !MyLogo.jpg
JAR is launched as: C:\ProvideX\JavX\JavX.jar
Disk file to search for: C:\ProvideX\JavX\MyLogo.jpg

If JavX is running as an applet, then JavX will generate a URL for the image, and
attempt to retrieve the image from the web server. JavX takes the URL that launched
the JavX applet, removes the jar file, appends the name of the image, then makes a
request to the web server for that URL.; e.g.,

Image requested: !STOP
JavX applet URL: http://www.pvx.com/login/JavX.jar
Image as a URL: http://www.pvx.com/login/stop.gif

External Images
JavX also displays external images, which are images whose names do not start with
an ! exclamation mark. The processing of external images depends on whether JavX is
running as an application, signed applet, or as an unsigned applet.

When running as an application or as a signed applet, the external file names used in
the { } GUI object specification or the 'PICTURE' mnemonic may come from a file on
the local hard disk of the client workstation, or any drive that the workstation has
mapped. Alternately you may specify any URL to retrieve the image from a web
server. See below for further information on URL usage.

When running as an unsigned applet, JavX cannot access the local file system, and
therefore cannot retrieve images from the workstation. You may use a URL.
However, to retrieve images from a web server, there is one restriction: an unsigned
applet may retrieve only URLs which originate from the same source machine as the
applet itself.

For example, if JavX is running as an unsigned applet loaded from the web server at
http://www.pvx.com/javx/JavX.jar, then information can only be retrieved
from URLs at the same web server; i.e., http://www.pvx.com.

Examples:

BUTTON 10,@(40,5,10,1.2)="{http://www.pvx.com/images/butimg.gif}"
PRINT 'PICTURE'(@X(40),@Y(5),@X(1),@Y(2.2),"http://www.pvx.com/

images/butimg.gif",0),

Note: When using URLs to retrieve image names, ensure that you encode them
properly; e.g., "http://www.pvx.com/images/My%20Background%20Image.jpg".

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 55

ProvideX COM Interface and JavX
COM Interface

The ProvideX COM interface has been implemented in JavX to enable access to Java
classes and applications. Refer to the document Automation in ProvideX for more
information on the ProvideX COM interface.

Most ProvideX developers will not use the COM support in JavX. However if your
ProvideX application needs to interact with third party Java classes, then the JavX OCX
interface is a great solution. Accessing Java classes through the ProvideX COM interface
in JavX is very similar to accessing COM objects in WindX. For example, to create an
instance of a Java AWT Button class, execute the following:

DEF OBJECT BTN,@(5,5,5,5),"[WDX]java.awt.Button"

Array Support
JavX supports the ProvideX extended object *VARIANT, but does not currently
support the following Extended Objects: *VARARRAY, *MASTER, *ERROR.
*VARARRAY may be supported in a future release of JavX.

Currently, JavX supports arrays through a JavX-specific extended object *ARRAY.
Java is a tightly-typed language. Therefore, an array type is required when creating
arrays. The size of the array is also required. For example, the following creates an
array of ten strings:

DEF OBJECT MY_STRING_ARRAY,"[wdx]*ARRAY,java.lang.String,10"

Accessing the array is exactly the same as accessing *VARARRAYs in ProvideX. The
following sets the first element in the array to the string "First" (Java arrays are 0 based):

STRINGARRAY'VAL.PUT(0,"First")

JavX can be used as a gateway to a world of valuable Java classes. For example, all of the
major databases (MySQL, Oracle, SQL Server, etc.) have JDBC drivers. The following
program loads a Java JDBC Driver and reads a MySQL Database:

00010 PRINT 'CS
00020 MULTI_LINE 10,@(10,2,50,15)
00030 DEF OBJECT Driver,"[wdx]com.mysql.jdbc.Driver
00040 DEF OBJECT DRIVERMANAGER,"[wdx]PvxDriverManager"
00050 LET URL$="jdbc:mysql://10.100.29.247/test"
00060 LET connection=DRIVERMANAGER'getConnection(URL$,user$,password$)
00070 LET M=connection'GETMETADATA()
00080 DEF OBJECT STRINGARRAY,"[wdx]*ARRAY,java.lang.String,1"
00090 STRINGARRAY'VAL.PUT(0,"TABLE")
00100 LET RESULTSET=M'GETTABLES("test",*-1,*-1,*STRINGARRAY)
00110 !
00120 DEF OBJECT b1,"[wdx]*VARIANT"
00130 DEF OBJECT b2,"[wdx]*VARIANT"
00140 LET b1'val=1
00150 LET b2'val=1
00160 LET b1'type$="B"

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 56

00170 LET b2'type$="B"
00180 !
00190 LET curItem$="Table and Table Index list"+SEP+SEP
00200 WHILE RESULTSET'NEXT$()="true"
00210 ! loop through tables RS
00220 LET tableName$=RESULTSET'GETSTRING$("TABLE_NAME")
00230 LET curItem$+="Table Name: "+tableName$+":"+SEP
00240 LET

indxInfo_ResultSet=M'GETINDEXINFO("test",*-1,tableName$,*b1,*b2)
00250 !
00260 LET curItem$+="Index List for "+tableName$+":"+SEP
00270 WHILE indxInfo_ResultSet'NEXT$()="true"
00280 ! loop through the tables indxInfo RS
00290 LET curItem$+="

"+indxInfo_ResultSet'GETSTRING$("INDEX_NAME")+SEP
00300 WEND
00310 LET curItem$+=SEP
00320 indxInfo_ResultSet'close()
00330 DROP OBJECT indxInfo_ResultSet
00340 !
00350 WEND
00360 RESULTSET'close()
00370 DROP OBJECT RESULTSET
00380 connection'close()
00390 DROP OBJECT connection
00400 DROP OBJECT DRIVERMANAGER
00410 DROP OBJECT Driver
00420 !
00430 MULTI_LINE WRITE 10,curItem$
00440 OBTAIN a$

Using Classes Without a "No Argument" Constructor
COM objects always have a public no argument constructor. A Java class's constructor
may be private (typically when implementing a Singleton design pattern), or there may
only be a public constructor that requires arguments. To maximize the value of the JavX
OCX interface we've added the ability to load a class and then instantiate it. This means
that a handle to a class can be retrieved, and then a static method in the class that returns
an instance of the class can be called.

Example of a Singleton. The Calendar class (found in the java.util package) in Java
is a Singleton. There can only be one instance of the Calendar class. Singletons are
usually implemented in Java by declaring the contstructor as not public. To get an
instance of the Calendar class in Java, a client object must call the Calendar class's public
static method getInstance().

The following example retrieves a handle to the Calendar class, and then finds and calls
the getInstance() method:

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 57

00010 !Get a handle to the Calendar class
00020 DEF OBJECT CALCLZZ,"[wdx]java.util.Calendar"
00030 ! find the method we want to call: getInstance()
00040 ! first create an array that identifies the types for each argument

the method requires
00060 DEF OBJECT PARAMETERTYPES,"[wdx]*ARRAY,java.lang.Class,0"
00070! Next get a handle to the static method getInstance
00080 LET

GETINSTANCEMETHOD=CALCLZZ'GETMETHOD("getInstance",*PARAMETERTYPES)
00090 ! Finally call the getInstance method to retrieve a Calendar object
00100 LET CALENDAROBJ=GETINSTANCEMETHOD'INVOKE(*CALCLZZ,*ARGUMENTS)
00110 ! we can now have a Calendar object we can use
00120 LET DATE=CALENDAROBJ'GETTIME()

The getInstance() method returns an instance of a Calendar class (similar to a
constructor). The Calendar object's getTime() method is called to return a Date object.

Event Support
The COM support in JavX is similar to COM support in ProvideX. There are a few minor
differences; e.g., Java event listeners provide notification when an event has occurred on
an object. The following example creates a button and ActionListener (an object that
responds to action events):

10 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"
20 EXECUTE "[wdx]on event java.awt.event.ActionListener from

"+STR(JBUTTON)+" preinput 100"
30 OBTAIN A$
40 PRINT A$

This example adds ActionListener to the button and when an action event occurs, a
CTL value of 10 is sent to the ProvideX host program. The following example adds
mouse event support only:

10 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"
20 EXECUTE "[wdx]on event java.awt.event.MouseListener from

"+STR(JBUTTON)+" preinput 10"
30 OBTAIN A$
40 PRINT A$

In this example, the CTL value 10 will be returned to the host program when the user's
mouse enters or exits the button, or the mouse button is pressed/released on the button.
Essentially every possible mouse event causes the CTL value 10 to be returned to the
ProvideX host.

For more fine grained event support it is possible to specify a specific method in an
EventListener class that will cause the CTL value to be sent to the ProvideX host. The
following example modifies the previous example so the CTL value 10 is only sent to the
host when a mouse button is pressed on the button:

10 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 58

20 EXECUTE "[wdx]on event java.awt.event.MouseListener;mousePressed from
"+STR(JBUTTON)+" preinput 10"

30 OBTAIN A$
40 PRINT A$

As in the ProvideX COM interface, the PVXEVENTS$ attribute of any object contains all
of the possible events for that object. The following example lists all of the event listeners
available to the java.awt.Button class and adds six different event listeners to a
button (each firing a unique CTL value):

00011 PRINT 'CS'
00012 LET LSTBX=20
00013 LET EVENT_LIST_BX=30
00020 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"
00030 LET MTDS$=JBUTTON'*
00040 LIST_BOX LSTBX,@(35,1,40,10),TIP="Attributes and Methods"
00041 LIST_BOX LOAD LSTBX,MTDS$
00042 !
00051 LIST_BOX EVENT_LIST_BX,@(35,12,40,10),TIP="Event listeners"
00061 LIST_BOX LOAD EVENT_LIST_BX,JBUTTON'PVXEVENTS$
00062 !
00070 EXECUTE "[wdx]on event java.awt.event.ActionListener from

"+STR(JBUTTON)+" preinput 100"
00080 !
00090 EXECUTE "[wdx]on event java.awt.event.MouseListener;mousePressed

from "+STR(JBUTTON)+" preinput 10"
00100 EXECUTE "[wdx]on event java.awt.event.MouseListener;mouseClicked

from "+STR(JBUTTON)+" preinput 20"
00110 EXECUTE "[wdx]on event java.awt.event.MouseListener;mouseReleased

from "+STR(JBUTTON)+" preinput 30"
00120 EXECUTE "[wdx]on event java.awt.event.MouseListener;mouseEntered

from "+STR(JBUTTON)+" preinput 40"
00130 EXECUTE "[wdx]on event java.awt.event.MouseListener;mouseExited

from "+STR(JBUTTON)+" preinput 50"
00140 !
00160 JBUTTON'SETLABEL("AWT Button")
00170 OBTAIN A$
00180 LET MYCTL=CTL
00190 SWITCH MYCTL
00200 CASE 10
00210 PRINT "Mouse Pressed: ctl ="+STR(CTL)
00220 BREAK
00230 CASE 20
00240 PRINT "Mouse Clicked: ctl ="+STR(CTL)
00250 BREAK
00260 CASE 30
00270 PRINT "Mouse Released: ctl ="+STR(CTL)
00280 BREAK

4. JavX - Java-Based Thin-Client Common Functionality and Limitations

ProvideX Client-Server Reference Back 59

00290 CASE 40
00300 PRINT "Mouse Entered: ctl ="+STR(CTL)
00310 BREAK
00320 CASE 50
00330 PRINT "Mouse Exited: ctl ="+STR(CTL)
00340 BREAK
00350 CASE 100
00360 PRINT "Action Event: ctl ="+STR(CTL)
00370 BREAK
00380 END SWITCH
00390 IF CTL<>4 THEN GOTO 0170

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 60

JavX for PC Platforms JavX SE

JavX SE (Swing Edition) represents the most full-featured edition of JavX. It is the
recommended thin-client for delivering expressive GUIs to end users who may need
to access the host application from any variety of desktop/laptop systems. The
various client-server options are discussed in the section Thin-Client Products,
p.10. The other JavX editions are documented in the section JavX for Portable
Devices, p.73.

JavX SE is designed to run on platforms that support the Java 2 Standard Edition (J2SE)
Java Runtime Environment (JRE), and it may be launched either as a Java application
(installed on the client machine) or as a Java applet (downloaded to the client’s web
browser as needed). This version of JavX employs an advanced set of GUI building
elements, known in Java as the Swing library, to provide a uniform look and feel on all
supported platforms.

Runtime Requirements for JavX SE

The JavX SE thin-client architecture is built for the J2SE JRE, which provides the
components needed to run Java as an applet or application. The runtime environment
only needs to be installed once on a workstation and it includes other key deployment
technologies: Java Plug-In, which enables applets to run in popular browsers, and
Java Web Start, which deploys standalone applications over a network.

This version of Java is available for a wide variety of platforms, including UNIX,
Linux, Mac OS X, or Windows 9x-2000/Me/NT4/Server 2003/XP/Vista as well as for
installation on some mobile and embedded devices. However, the workstation
versions are still more common. Apple OS X has Java SE JRE built into the OS. The
larger PC/Windows OEMs (Dell, HP, etc.) install Java SE JRE on their pre-packaged
systems. Most commercial versions of Linux also come with the Java SE JRE.

Popular web browsers (Netscape, FireFox, etc.) are equipped with the Java SE
Plug-in. If Java is not already installed, the web browser usually handles the
download and installation of the Java (as with all plug-ins like Flash and Real Player)
seamlessly the first time a Java applet is encountered on a web page.

For more information on the different Java 2 platforms, visit www.java.sun.com.

If JavX SE is deployed as an application, several automated installation tools, such as
InstallShield or InstallAnywhere, can be used to install the JavX JAR file (Java
ARchive file) along with the required runtime environments. For a JAR file to be run
as an application, you will need to install the Java JRE or a Java JIT (Just-In-Time)
compiler or the full Java SDK.

Note: The JavX Developer’s Kit can be used to install the latest version of the Java 2
runtime environment. See also JavX Distribution Format (JAR Files), p.44.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 61

If JavX SE is deployed as an applet, then HTML code and Java script may be used
within an HTML page to determine if a JRE exists on the workstation. The option to
automatically download and install the JRE can also be included on the HTML page.
All Java 2 runtime environments can be downloaded from the java.sun.com website.
Point your links to JRE locations in java.sun.com, or download the files in advance,
and have the links point to locations on your own web/FTP server.

See the HTML Reference, p.63 for details on these types of HTML pages, their
requirements, and their usage.

JavX SE Deployment

Developers who are new to JavX and the Java environment should download the
JavX Developer’s Kit, before they get started. The JDK installs a Documents folder,
two shortcuts that will launch JavX as an application connecting to the ProvideX
Application server, and a folder called JavX_PageGen. It is important that you read
all the available documentation beforehand.

While JavX SE may be launched either as a Java applet or as an application, we
recommend that you initially run JavX as an application to better understand how
the product works. This option is available to all JavX editions and is fully described
under Installation and Configuration, p.44. If you choose to deploy JavX as an
applet, this option is only supported under JavX SE and is fully described in the
sections that follow.

As described earlier, when JavX SE is launched as an applet, the JAR is delivered
only as it is needed. However, this does not mean that it will be downloaded for
every connection to the web server. In fact, browsers generally cache and re-use Java
applets (as with other web documents) to avoid unnecessary downloading and
improve the startup performance of web pages.

Also, like most other web-based applications, the JavX SE applet does not have full
access to local facilities, such as printers. Alternative printing solutions are discussed
in the section Printer Support, p.52. The two security levels used to control access to
the local workstation, Signed and Unsigned, are discussed below in the section Java
Security and Digital Signing of an Applet, p.62.

JavX Applet Syntax
The following JavX-specific parameters and values must appear within the applet
reference of an <APPLET>, <OBJECT>, or <EMBED> tag within an HTML page. This
is in addition to any parameters and values required by the <APPLET>, <OBJECT>,
or <EMBED> tags themselves. For details, see the HTML Reference, p.63.

Note: For a review of the limitations that apply to all JavX editions, refer to the section
ProvideX Features not Supported in JavX, p.48. General features and limitations are
listed under JavX vs. WindX, p.26.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 62

All parameters must appear within the following tags.

Java Security and Digital Signing of an Applet
When JavX is deployed within a web browser, the browser will impose security
restrictions on what the Java applets may or may not do based on whether they are
signed or unsigned.

A signed applet is one that contains a digital signature, whereas an unsigned applet
does not. A digital signature contains information about the company that signed it.
This allows an applet's origins to be authenticated and traced. Therefore, when an
applet is tampered with, the tampering shows up during the validation of the signing
authorization. Signing an applet ensures that only an approved copy will be used and
that it will arrive intact containing only the functionality specified by the developer.

By signing an applet, a company takes responsibility for the actions of that applet,
since signed applets can be traced back to the author who signed it. A malicious applet
with a digital signature can be traced back to the responsible person or company. A
signed applet has the same rights and permissions as a Java application. It has
unrestricted access to the user's workstation and file system.

The functional restrictions imposed on unsigned applets are identified as follows:

• Access to files on the local workstation is denied.

• Access to printers on the local workstation is denied.

• Any TCP/IP connections within the session may only communicate with the same
server from which the applet was invoked. An exception to this is when a new
browser session is opened, as the new browser session may be pointed to a server
other than the original server that served up the applet. This exception works because
the new browser session is independent of the originating java session that spawned it.

• An extra message bar is displayed on a Dialogue that indicates the applet is
unsigned.

Code Name of Java Class to run, usually "NetworkClientApplet.class"
(case-sensitive). However, if connected to an SSL server, the value is
"SSLNetworkClientApplet.class"

Archive Java archive file to use. Value is always "JavXSE.jar" (case-sensitive)

Args All the variables JavX requires to run are passed in one string from the
command line, or on an HTML page in a parameter called "args".

Note: The JavX Developer’s Kit includes an application that handles this for you. The
Web Page Configuration program (Javxpagegen.pvs) automatically builds the
web pages that will run JavX as an applet. We highly recommend that you use this
application instead of manually inserting the various applet formats. For more
information refer to the Web Page Generator, p.70.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 63

The applet designer controls all the functions used within an applet, and as such,
controls what the applet does and is capable of doing. The designer also determines
which local files will be accessed and the associated read / write operations. The
decision to sign prevents the applet from being tampered with and programmed to
perform functions not intended by the signer.

Sage Software Canada Ltd. will not digitally sign JavX as an applet since JavX is
designed to respond and act upon commands initiated by the host application. Since
Sage Software Canada Ltd. has no control over the host application, we are unable to
guarantee that JavX will not adversely effect the operations of the workstation or use
the information contained on the workstation inappropriately.

A ProvideX developer responsible for the server-side programming that controls the
operation of the JavX applet may elect to digitally sign the JavX applet themselves
for use with their application.

HTML Reference

When JavX is launched from a website, both the HTML and the applet must be made
available via a web server that has the correct mime types for Java files.

The client’s browser must support Java applets in some form. However, since an
applet is rendered by the browser, there is no easy way to interrupt the browser and
force it to use JRE. Therefore, implementing support for the various combinations of
browsers and platforms can be a bit complicated; i.e.,

• If a browser has built-in support for Java 2 (Netscape 5 or higher, Mac OS X with
MS IE) or the JRE is version 1.4 or higher, then the <APPLET> tag can be used
within the web page.

• If a browser does not have built-in support for Java 2 (Windows IE) or the JRE is
version 1.3 or lower, then the <OBJECT> tag reference must be used for defining
the Java applet.

• If a browser supports neither the <APPLET> tag nor the <OBJECT> tags for Java 2
applets, (Netscape prior to Version 5), then the <EMBED> tag must be used to
reference a Java applet.

It should be noted that, while Netscape supports the <APPLET> tag directly, it also
still supports the <EMBED> tag.

File Extension Mime Type

.jar application/octet-stream

.class application/x-java-applet

Note: Further discussion on the tagging structures required for using the Java plug-in
(<OBJECT> ,<EMBED> , or <APPLET> tag) can be found on the java.sun.com website.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 64

The following sections explain the HTML that can be used to create a location on the
page for a Java applet (JavX in particular). Some sample code is provided that may
be used within the web page to determine whether or not the user has a Java 2
Run-Time environment installed. There is also code to automatically download the
correct Java 2 Run-Time for the particular OS that the client is using on his
workstation.

Applets and HTML
This section provides examples and background information on how to manually insert
the appropriate <OBJECT> ,<EMBED> , or <APPLET> tags in an HTML page to
download a Windows version of the JRE. The object references define a location on a
web page for a Java applet, as well as the characteristics of that applet.

The following tagging examples are browser-specific, but not operating system
specific. Therefore, in order to use the same code for multiple operating systems
where different JRE installations are required, you must determine the browser and
the Operating System the browser is running on.

The parameters shown are the minimum parameters that must be used.

<APPLET> Tag Settings
<APPLET code="NetworkClientApplet.class"
width=800 height=600 align="baseline">
<PARAM NAME="archive" VALUE="JavX.jar">
<PARAM NAME="code" VALUE="NetworkClientApplet.class">
<PARAM NAME="args" VALUE=" server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

</APPLET>

The <APPLET> tag is supported by all browsers that natively support Java 2 or on
any machine where the Java 1.4 plug-in is installed. Name parameters (i.e., Codebase
or Pluginspage) are not required if the browser supports Java 2 applets directly.
Refer to the HTML Parameters chart for more information.

<OBJECT> Tag Settings
<OBJECT Classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
Width="800" Height="600" Align="baseline"
Codebase="http://www.mydomain.com/downloads/JRE/jre-1_2_2_006-win.exe">
<PARAM NAME="Archive" VALUE="JavX.jar">
<PARAM NAME="Code" VALUE="NetworkClientApplet.class">
<PARAM NAME="Type" VALUE="application/x-java-applet;version=1.2.2">
<PARAM NAME="args" VALUE=" server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

</OBJECT>

Note: The JavX Developer’s Kit includes an application that automatically builds a
web page that runs JavX as an applet, the Web Page Generator, p.70. We recommend
that you use this application instead of manually inserting the formats described below.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 65

The <OBJECT> tag is supported by all Window platforms using Microsoft Internet
Explorer. Refer to the HTML Parameters chart for more information.

<EMBED> Tag Settings
<EMBED type="application/x-java-applet;version=1.2.2"
width="800" height="600" align="baseline"
archive="JavX.jar"
code="NetworkClientApplet.class"
pluginspage="http://www.mydomain.com/downloads/JRE/jre1_2_2-001-win.exe"
args= " server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

<NOEMBED>
No Java Run-Time Environment support for JavX

</NOEMBED>
</EMBED>

The <EMBED> tag is supported by Netscape prior to Version 5. Pluginspage is the
equivalent to Codebase in the <OBJECT> tag, and determines which download to
install if the mime type specified does not exist within the client browser's mime
definitions. The HTML parameters are described below.

HTML Parameters
JavX-specific parameters and values must appear within the applet reference of an
<APPLET>, <OBJECT>, or <EMBED> tag within an HTML page. If necessary, you
can also add your own parameters to the object; e.g., <PARAM name="parmname"
value="data"> can be retrieved later via FIN(0,"GetParam parmname").

Parameter Description
Classid <OBJECT> tags only. This is the object class identifier used by the

browser to determine if there is a software package installed that can
execute the object. In the example above, the class ID is the JRE class
ID. (This should not be changed.) When the browser attempts to use
the class, it determines if the class ID is installed. If so, then it runs the
Code associated with it. If not, it will run the Codebase to find the
software to install to support the object.

Width For all formats. Width (in pixels) of the applet area on the web page.
Minimum value is 1.

Height For all formats. Height (in pixels) of the applet area on the web page.
Minimum value is 1.

Align For all formats. HTML alignment name indicating how to align the
area to its location on the web page.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 66

Required Arguments:

Optional Arguments:

Codebase <OBJECT> tags only. URL to download if the class ID has not been
installed. In the example above, it would download the JRE for
Windows from the specified web server. Either make the run-times
available from your own web server, or use a URL which would
download the runtime directly from java.sun.com.

Pluginspage <EMBED> tags only. Equivalent to Codebase above.
Archive For all formats. Name of Java Jar file, in this case JavX.jar.
Code For all formats. Name of the main class file within the jar file to run.

For JavX it is always NetworkClientApplet.class.
Type For all formats. Mime type of the object. This is always

application/x-java-applet;version=V#.
args For all formats. Variables for running JavX. All required, optional, and

Application Server arguments are described below.

server= Either the IP address of the host system where the *NTHost
or *appserv is running or the host name of the server.

port= TCP/IP socket number that the *NTHost or *appserv is
monitoring.

program= Program to run on the server. Either one of the following:
• Program name; e.g., *nomads would launch a ProvideX

session and run NOMADS automatically.
• Portion of the ProvideX command line that the server

executes from the lead program to the end of the command
line; e.g., C:\MY_DIR\MY_PROG.EXE -ARG...

onapplet= Boolean: true or false (default false).
onapplet=true indicates that JavX should put windows in
the browser. onapplet=false indicates that JavX should
put windows on top of the browser.

LookAndFeel= GUI appearance other than default system’s look-and-feel.
set_mf= Multiline factor (default value is 50).
fontsize= Text plane font size (default value is 12).
basewinwidth= Base window's width (default value is 80).
basewinheight= Base window's height (default value is 25).
ConnectString= String to send to the server daemon in place of the standard

string sent by *NTHost or *appserv .

Parameter Description

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 67

Application Server Arguments:

HTML Example for Detecting OS and Browser Type.
The following example uses JavaScript within a single web page to determine the
user's operating system and browser. The correct <OBJECT> ,<EMBED> , or
<APPLET> tags can then be specified for the operating system, such that the correct
JRE will be downloaded. This does not deal with all possible operating systems, but
provides a good starting point:

<SCRIPT LANGUAGE="JavaScript"><!--
var _info = navigator.userAgent; var _ns = false;
var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 &&
 _info.indexOf("Windows 3.1") < 0);
</SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--
var _ns = (navigator.appName.indexOf("Netscape") >= 0 && (
 (_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0 &&
 java.lang.System.getProperty("os.version").indexOf("3.5") < 0) ||
 (_info.indexOf("Sun") > 0) || (_info.indexOf("Linux") > 0)));
</SCRIPT></COMMENT>
<SCRIPT LANGUAGE="JavaScript"><!--
if (_ie == true && _info.indexOf("Win") > 0)
 document.writeln('<OBJECT
 classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 width="1" height="1" lign="baseline"
 codebase="http://www.mydomain.com/download/plugins/jre-1_2_2_006-win.exe">
 <PARAM NAME="archive" VALUE="JavX.jar">
 <PARAM NAME="code" VALUE="NetworkClientApplet.class">
 <PARAM NAME="type"

VALUE="application/x-java-applet;version=1.2.2">
 <PARAM NAME="args" VALUE=" server= www.company.com;

program= D:\IQ\config\go;

applicationserver= Boolean: true or false (default false).
applicationserver=true indicates that JavX will be
connecting to the ProvideX application server.

login= Boolean: true or false (default false).
login=true indicates that JavX should attempt to login to
the ProvideX application server prior to launching the
ProvideX session.

clientFID= Value of the FID(0) the client wants the server to use.
clientstartindirectory=

Directory where the server will run the application.
clientcmdoptions= Extra command line options to be passed to the server.
clientarguments= Additional command line arguments (-arg) to be passed to

the server.
SSL= Boolean: true or false (default false).

SSL=true indicates that JavX should encrypt communication
with the ProvideX Host.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 68

port=20000; ">
 <NOEMBED><XMP>');
else if (_ns == true && _info.indexOf("Linux") > 0)
 document.writeln('<EMBED

type="application/x-java-applet;version=1.2.2" width="1" height="1"
align="baseline" code="NetworkClientApplet.class" archive="JavX.jar"
pluginspage="http://www.mydomain.com/downloads/plugins/jre-1_2_2_006-w
in.exe" args= "server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

 <NOEMBED><XMP>');
else if (_ns == true && _info.indexOf("Win") > 0)
 document.writeln('<EMBED

type="application/x-java-applet;version=1.2.2" width="1" height="1"
align="baseline" code="NetworkClientApplet.class" archive="JavX.jar"
pluginspage="http://www.mydomain.com/downloads/plugins/jre-1_2_2_006-w
in.exe" args= "server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

 <NOEMBED><XMP>');

else if (_info.indexOf("Mac") > 0)
 document.writeln('
 <applet code="NetworkClientApplet.class" width=1 height=1 align="baseline">
 <PARAM NAME="archive" VALUE="JavX.jar">
 <PARAM NAME="code" VALUE="NetworkClientApplet.class">
 <PARAM NAME="args" VALUE=" server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

</applet>');
</"file://-->
</SCRIPT>

Setting Focus to the Applet Window
The following example sets the focus to the JavX applet when the JavX applet base
window is part of the browser window (when OnApplet="true"). The applet is
placed within a form, and this allows the forms methods to force focus to the applet
itself. Note the need to name the applet (NAME="JavXApplet") and the extra
parameters to allow it to be scriptable. With the <APPLET> tag, you would have to
include a <PARAM NAME=SCRIPTABLE VALUE="true">.

<form id=hide>
 <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 NAME = "JavXApplet" width="800" height="600" align="baseline"

codebase="http://www.mydomain.com/downloads/plugins/jre1_2_2-001-win.exe">
 <PARAM NAME="SCRIPTABLE" VALUE="true">
 <PARAM NAME="archive" VALUE="JavX.jar">
 <PARAM NAME="code" VALUE="NetworkClientApplet.class">
 <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">
 <PARAM NAME="args" VALUE=" server= www.company.com;

program= D:\IQ\config\go;

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 69

port=20000; ">
 <COMMENT>
 <EMBED type="application/x-java-applet;version=1.2.2" width="800"
 height="600" align="baseline" code="NetworkClientApplet.class"

archive="JavX.jar"
 pluginspage="http://www.mydomain.com/downloads/plugins/jre1_2_2-001-win.exe"
 args= "server= www.company.com;

program= D:\IQ\config\go;
port=20000; ">

 <NOEMBED>
No JDK 1.2 support for JavX

 </NOEMBED>
 </EMBED>
 </COMMENT>
 </OBJECT>
 <INPUT style="border: 0px;" ReadOnly id=xx maxLength=0 name="JavXField"

type=text notab>
</form>

<SCRIPT LANGUAGE="JavaScript">

function focusToJavXApplet ()
{
// This pulls focus away from the applet so the next stuff can
// put it back. It seems without this every second try does not
// restore focus to the applet
hide.JavXField.focus();
document.JavXApplet.jsForceFocus();
document.JavXApplet.requestFocus();
}

window.onfocus = focusToJavXApplet;
</SCRIPT>

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 70

Web Page Generator
A convenient easy-to-use GUI utility is included with the JavX Developer’s Kit
(JDK) to automate the process of embedding JavX in web pages. The JDK is freely
downloadable from www.pvx.com.

The correct HTML (and sometimes JavaScript) for configuring JavX is largely
dependant on the browser, the operating system, and the Java Runtime Environment
present on the client machine. This GUI utility creates the necessary tagging
structures using data collected from a central panel. The contents of the fields (web
page name, browser/OS type, JRE location, server information, etc.) are assembled
into the appropriate HTML tags and parameters then inserted automatically into a
web page template.

Once the JDK (plus JavX) is installed, cwdir to JavX_PageGen from the JavX console
and run JavXpagegen.pvs to launch the Web Page Configuration program. The
central panel is divided into two panels for browser settings and optional parameters, as
shown on the previous page.

Full details on the use of Web Page Configuration program can be found in the Web
Page Generator Tutorial that is installed with the JDK.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 71

Troubleshooting JavX SE

If you are new to JavX and the Java environment, we recommend that you download
the JavX Developer’s Kit, before you get started. We also recommend that you run
JavX as an application initially to better understand how the product works. The
following sections discuss some the of problems you may encounter.

Problems Launching JavX as an Applet
If you have generated a web page using the Web Page Generator, and the JavX
applet fails to load or run, follow these steps to determine the cause and resolve the
problem:

1. Make sure that Java 1.4.2 or higher is installed on the client machine.

2. Make sure that a running web server has access to the HTML page the JavX applet
is embedded on, as well as the JavXSE.jar file. Ideally the HTML page and JAR
should be in the same directory.

3. Make sure that the ProvideX host is running normally (either the ProvideX
Application Server or *NThost).

4. Run the Java Plug-in Control Panel. On Windows, select Start > Settings >
Control Panel > Java Plug-in, then select the Java console's Show console radio
button. On Mac OS X, select Finder > Applications > Utilities > Console.

5. Restart the web browser. When the web browser encounters a Java applet it
should now show the Java Console. The Java Console provides detail on errors
encountered while loading and running JavX.

Errors Reported in the Java Console
The following list provides some instructions for resolving errors reported in the
Java Console:

java.security.AccessControlException: access denied
Make sure the IP address specified on the HTML page in the "server=" matches
the domain/IP address specified in the web browser's URL address text field. For
example, if an HTML page called JavX.HTML has an "args" parameter that
indicates "server=localhost", then the web browser URL text field must
indicate http://localhost/JavX.HTML.

java.net.ConnectException: Connection refused: connect
Check that a ProvideX host program is running and accessible at the location
specified in the HTML page's "args" parameter. Check that a firewall is not
blocking the JavX connection.

java.lang.ClassNotFoundException: NetworkClientApplet.class
If you see this message, perform the following:

• Make sure a web server is serving up the HTML page - do not just double click
on the HTML page in Windows Explorer and expect JavX to run.

4. JavX - Java-Based Thin-Client JavX for PC Platforms

ProvideX Client-Server Reference Back 72

• Confirm that the web server has access to the JavXSE.jar file.

• Confirm the web server has the mime type configured for Java classes and jars
(older versions of the ProvideX WebServer did not ship with these mime types
pre-configured).

java.lang.ClassNotFoundException: java.io.FileNotFoundException
Typically this is related to an improper mime type. The web server you are using
does not know how to transfer a Jar or Class file, nor can it inform the browser of
the correct mime type for the transferred file. The browser, therefore, does not
understand how to handle the file. See the HTML reference section of this
document for more on adding the correct mime type.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 73

JavX for Portable Devices
J avX AE/LEIn recent years, Java has become the universal runtime environment for distributing

interactive software to a wide variety of consumer devices. It is responsible for
bringing advanced functionality to a wide range of products that includes personal
digital assistants (PDAs), mobile phones, pagers, and similar embedded computers.
However, due to limitations in the device-oriented Java runtime, the traditional
client-server architecture found in JavX SE is not ideally suited for this market.

Instead, two JavX editions have been developed to allow ProvideX client-server
applications to be run on mobile devices: JavX AE (AWT Edition) and JavX LE (Light
Edition). These JavX products are adapted for the Java 2 Micro Edition (J2ME)
specification, a Java version that has been optimized for constrained/embedded
implementations.

For a discussion on the full range of client-server options, refer to the section
Choosing the Right Solution, p.10.

Runtime Requirements for JavX AE/LE
The JavX AE and JavX LE thin-clients are designed for the Java 2 Micro Edition
(J2ME) Java Runtime Environment (JRE) which involves several specifications for
addressing the diverse needs of a variety of portable devices. This section discusses
J2ME and explains the core concepts behind device-oriented Java.

About the J2ME Specification
J2ME

The Java Community Process (JCP) is a process whereby a wide range of hardware
and software vendors come together to agree on specifications and standards for
new and existing Java APIs. J2ME is a result of the JCP agreeing on configurations
and specifications mobile devices and software vendors can support.

According to Sun: "The Micro Edition of the Java 2 Platform provides an application
environment that specifically addresses the needs of commodities in the vast and rapidly
growing consumer and embedded space, including mobile phones, pagers, personal digital
assistants, set-top boxes, and vehicle telematics systems."

Currently, Java-based handsets dominate the market for mobile applications. Several
major players in the handheld market (Nokia, Ericsson, Motorola, RIM, IBM, etc.) have
chosen Java as their preferred development environment and devices from the
manufactures come with a J2ME JRE installed.

Note: JavX LE is currently not available for direct download; however, developers are
welcome to contact Sage Software Canada Ltd. to request a copy if they are interested.

Note: SSL is an optional component in the J2ME package, and not all vendors include
these classes in their runtime. If SSL classes are omitted, and SSL is used, JavX will
terminate.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 74

J2ME Configurations and Profiles
J2ME supports a vast array of hardware and operating systems through an abstraction
known as a configurations and profiles. This system of configurations/profiles benefits
device manufacturers and application programmers in a number of ways:

• Device Manufacturers. Manufacturers choose the J2ME configuration and profile for
their devices, or include a compliant JRE.

• Application Programmers. When writing an application, developers can target for
the J2ME configuration and profile rather than a specific device.

Configurations define minimum platform requirements for a group of devices by
considering processor power, memory available, and screen size. There are currently
two J2ME Configurations: Connected Device Configuration (CDC) and Connected
Limited Device Configuration (CLDC). The following table compares the two:

Configurations are divided into Profiles, higher level APIs that define the user
interfaces available and access to device hardware. Profiles, together with
configurations, provide a complete JRE specification for a targeted group of devices;
e.g., the CDC Personal Profile and the CLDC Mobile Information Device Profile.

CLDC Mobile Information Device Profile (MIDP)
The Mobile Information Device profile extends the CLDC configuration and
provides a complete specification for J2ME JREs for small devices with limited
network speed and a very basic user interface.

MIDP JREs are found typically on cell phones and on entry level personal digital
assistants (PDAs); e.g., RIM includes a CLDC MIDP JRE. A MIDP device must meet
the following minimum requirements:
• A minimum screen size of 96x54
• 32kb of memory for JRE
• Network Connection.

Connected Device Configuration (CDC)

• Qualifiers
• Faster Processor
• More Memory
• Faster Network connection

• Example
• Pocket PC PDA
• TV Set-top devices
• In-vehicle system

• Hardware
• 16 or 32 bit CPU with 128 or 512

KB of memory.

Connected Limited Device Configuration (CLDC)

• Qualifiers
• Minimal Processor power
• Minimal Memory
• Network connection

• Example
• Mobile Phones
• RIM Blackberry
• Palm PDAs

• Hardware
• 16 or 32 bit CPU with 128 or 512 KB of

memory.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 75

The Mobile Information Device profile defines and requires the following core
functionality for the device:
• User Interface (UI)
• Network connectivity
• Local file access
• Application life-cycle control.

CDC Foundation Profile
The Foundation Profile extends the CDC configuration and provides a complete
specification for J2ME JREs for embedded devices with a network connection but no
user interface. The Foundation Profile device must meet the following minimum
requirements:

• 1024kb of ROM
• 512kb of RAM
• Network Connection

Example devices include network printer, router, residential gateways.

CDC Personal Basis Profile
The Personal Basis Profile extends the CDC configuration and provides a complete
specification for J2ME JREs for embedded devices with a network connection and a
very basic user interface. Example devices include interactive television, automotive
components, fixed consumer devices.

CDC Personal Profile
The Personal Profile extends the CDC configuration and provides a complete
specification for J2ME JREs for devices with a network connection and a full
Graphical User Interface (GUI). Personal Profile JREs resembles the standard edition
of Java found on desktop PCs. Personal Profile devices require at least:

• 2.5 Mb of ROM
• 1 Mb of RAM
• Network Connection

Example devices include handheld bar code scanners, game consoles, and high-end
PDAs such as, iPAQ Pocket PC.

WebSphere Everyplace Micro Environment (WEME)
While the J2ME specification can be considered a universal standard, there are almost
as many runtime environments as there are device manufacturers. Some pre-package
their devices with a J2ME runtime environment installed. Some deliver their JREs on
a "companion CD" along with various supplementary utilities. Others, such as the
RIM Blackberry, have a J2ME JRE built right into the device’s OS. A search for "J2ME
Java Virtual Machines" on the internet will return dozens of different vendors.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 76

JavX was development using IBM's WebSphere Everyplace Micro Environment
(WEME), a production-ready Java Runtime Environment that has been
tested/certified to meet J2ME specifications. It comes pre-installed on several
devices, but it can also be purchased for under $10. The evaluation version (no
expiration) can also be downloaded free of charge. WEME downloads are available
at the following locations:

IBM. WEME is included with a suite of tools called IBM Workplace Client Technology,
Micro Edition 5.7 (free evaluation software). Go to www.ibm.com/software.

Handango. WEME is featured under the Development Tools category, and may be
downloaded for a nominal price. Go to www.handango.com.

WEME supports several different J2ME configurations and profiles depending on
the platform; e.g.,

• CDC Foundation Profile, and Personal Profile for more powerful PDAs, Bar Code
Scanners, etc.

• CLDC Mobile Information Device Profile (MIDP) for limited PDAs.

JavX AE and JavX LE should operate in any runtime environment that implements
the J2ME CDC specification. However, because JavX AE has been tested against
IBM’s WEME runtime environment, we currently only offer support for JavX AE
running in WEME.

Installing JavX AE/LE on a Portable Device

JavX AE and JavX LE JAR files can be installed on a wide variety of devices — in
fact, any device with a J2ME CDC JRE. This document cannot provide the
installation instructions required for every conceivable J2ME device on the market;
therefore, the following procedure will concentrate on one of the more popular
platforms, Windows CE (Windows Mobile for Pocket PC).

Example Installation Procedure for Windows CE
The following instructions cover the installation of JavX AE (or JavX LE) on an iPAQ
running Windows Mobile 2003. Similar procedures work for most CE devices; e.g.,
Symbol Bar code scanners.

1. Ensure that your device is docked in its cradle and that the cradle is connected
directly to a desktop computer that is running Microsoft ActiveSync.

2. Download IBM's JRE for Windows Mobile 2003 on to the desktop computer.
Vendor download sites are described under WebSphere Everyplace Micro
Environment (WEME), p.75. This may be a large download because it includes
numerous additional tools.

3. Unzip the downloaded file to a directory on your desktop and run the
installation/setup program provided. The installation menu may include a variety
of JREs. Install WEME Personal Profile 1.0 for Windows Mobile 2003.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 77

4. Using Windows Explorer on the desktop, navigate to the directory that comprises
the J9 runtime environment on the connected device. Create a shortcut for the
J9.exe file and rename it to JavXAE (or JavXLE).

5. The contents of the new shortcut can be viewed/edited by dragging the JavXAE
icon into Windows Notepad on the desktop. It file should contain a string similar to
147#"\Program Files\J9\PPRO10\bin\j9.exe". Append the following
text (without line breaks) to this string, then save the file:

-classpath \JavX\JavXAE.jar -jcl:ppro10 localNetworkClientTest
"server=myServer; port=10000; fontsize=10; "

The last string ("server=myServer; port=10000; fontsize=10; ") is the
argument string (ArgString$) that will be passed to JavX at start up. Change the
"server=myServer" and the "port=10000" arguments to reflect the actual
server and port number that the host is running on. When running the ProvideX
Application Server, add "applicationserver=true" to the ArgString$.

For more information on the ArgString$ see the section Launching JavX as an
Application, p.46. Alternatively, omit the ArgString$ and JavX will retrieve the
start up arguments from the JavX.properties file. For more information on the
JavX.properties file, see the section Launching JavX Clients without
Arguments, p.47.

6. Using Windows Explorer on the desktop, create a directory called JavX in the root
directory of your device. Copy the JavXAE.jar into the new JavX directory.

7. Copy the edited JavXAE shortcut file into the device's \Windows\Start
Menu\Programs directory.

8. On the device, select Start > Programs > JavXAE to launch the JavX ProvideX
console.

JavX Windows CE Configuration Wizard
The JavX Windows CE Configuration Wizard program uses the ProvideX WinCE Link
object to automate the manual installation steps covered in the previous section
Example Installation Procedure for Windows CE, p.76. This wizard steps through
the following to simplify the setting up and running of JavX AE/LE on a CE device:

• Collecting arguments required by JavX and creating a shortcut that runs JavX in
IBM's WEME Personal Profile JRE.

• Creating the JavX directory on a CE device and copying the JavX AE/LE JAR file
into it.

• Copying the shortcut (created in step one) to the specified directory on the CE device.

• Checking the CE device's registry to determine if IBM's WEME JRE is installed. If it is
not installed, the JRE installer's CAB file is copied to the device and the installer is run.

• Running JavX on the CE device with the arguments specified.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 78

JavX AE Deployment and Functionality
JavX AE

JavX AE (AWT Edition) is designed to run on devices that support the Java 2 Micro
Edition (J2ME) specification. It requires at least a CDC Personal Profile JRE and is
considered to be the JavX edition best suited for use in high-end portable devices,
such as PDAs and mobile phones. This version of JavX employs the Abstract
Windowing Toolkit (AWT), a lightweight set of graphical elements used to build
GUIs in Java programs. JavX AE is more accessible than JavX SE, but it provides a
slightly less expressive graphical interface.

JavX AE is normally deployed on a handheld device running an OS such as Pocket
PC or Windows CE. Because J2ME Foundation and Personal Profiles inherit a large
subset of the J2SE core API, JavX AE implementations are upwardly compatible with
JavX for PC Platforms: Apple OS X, UNIX, Linux, and MS Windows 9x,NT,2000,XP.

Available Features
For a general overview of the features available in all versions of JavX, refer to the
sections listed under Common Functionality and Limitations. Since JavX AE is
built on the same core classes as JavX SE, the same limitations also apply to JavX AE.

As mentioned earlier, the primary difference between JavX AE and JavX SE is that
JavX SE uses the Java Swing library of GUI components and JavX AE uses the Java
AWT library of GUI components. Java AWT offers a less rich GUI environment, but
also has a smaller footprint than the Swing library.

Features not Supported in JavX AE
JavX AE has the following limitations in addition to those described under ProvideX
Features not Supported in JavX, p.48:

1. Image Support. Images cannot be added to control objects. For example, the stop
image below will be ignored:

BUTTON 10,@(10,10,10,10)="OK{!stop}"

2. Control Properties. JavX AE supports a subset of the list of properties, including:
Auto, BackColour, BackColor, Col, Cols, CtlName, Enabled, Eom, Focus, Font,
Height, hWnd, Key, Left, Line, Lines, Parent, TextColour, TextColor, Tip, Top,
Value, Visible, Width, Msg, OnFocusCtl, Id.

3. LIST_BOX. JavX AE only supports standard list boxes. Formatted, Treeview, and
Listview list boxes are not supported. The LIST_BOX OPT= options "~" (no height
adjustment), "B" (no border or frame), "d" (permanently disabled), and "h" (permanently
hidden) are not supported. Note that "D" (initially disabled), and "H" (initially hidden)
are supported.

4. MSGBOX. A maximum of two buttons can be added to a message box and images
are ignored; e.g.,

MSGBOX "Click please","INFO","YESNOCANCEL,?",X$

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 79

This example creates a message box with a question mark icon and three buttons
with the following text "YES","NO","CANCEL" in ProvideX and JavX SE. In
JavX AE, a message box with no icon and two buttons with the text "YES", "NO"
will be created.

5. Global Controls. JavX AE does not support global controls. In ProvideX, some
GUI components can be declared global at creation; e.g.,

BUTTON *10,@(10,10,10,10)="ok"

The * asterisk indicates this button is global and can always be accessed even when
the window the button is on does not have focus. JavX AE runs on devices with
small screen sizes that generally support one window at a time. For example, on
Pocket PC only one dialogue will be visible at a time. A dialogue receiving focus
will completely hide any other dialogue, therefore global controls are not
necessary because a control on a dialogue without focus will not be visible.

6. Grids. JavX AE does not support grids.

7. BUTTON, RADIO_BUTTON, CHECK_BOX. Most OPT= options are not supported.
Only "D" (disabled), and "H" (hidden) are supported.

8. MULTI_LINE. Formatted multi-lines are not supported; e.g., a format mask
specified by FMT="mask$", is ignored in JavX AE and alpha numeric characters
could be entered by an end user. Applications requiring format masks on
multi-lines must apply the format on the server side. Only the OPT= options "$"
(Password $ Mask), ">" (Include horizontal scrollbar), "A" (Auto), "t" (tab key), "T" (strip
trailing spaces), "D" (initially disabled), and "H" (initially hidden) are supported.

9. 'DIALOGUE' and/or 'WINDOW' Mnemonics. Only the OPT= options "c" (child of
current window), "h" (no title bar), "i" (no icon in the upper left corner), "m" (enable
"maximize" box in top right corner), "M" (window has a menu bar.), "s" (return CTL
value on state change) are supported.

10. MENU_BAR. JavX AE does not directly support MENU_BAR items that do not have
a sub-menu. Sub-menus are created by duplicating the main item. For example, the
definition menu_bar menuctl,"-[&File,&Edit],F:[&Open,&Close]" results
in an menu item "Edit" which has a sub-menu item of "Edit".

JavX LE Deployment and Functionality
JavX LE

JavX LE (Light Edition) is designed to run on fixed-purpose embedded devices that
support the Java 2 Micro Edition (J2ME) specification. It requires only a J2ME CDC
Foundation Profile. While JavX LE has no built-in user interface support, it does
have Java reflection support through the ProvideX OCX interface. If there are GUI
classes available on the client device, ProvideX applications can create a GUI via the
ProvideX OCX interface.

4. JavX - Java-Based Thin-Client JavX for Portable Devices

ProvideX Client-Server Reference Back 80

The primary purpose of JavX LE is to provide access to the local file system and JRE
classes via ProvideX OCX support and it is ideally suited for deployment on an
embedded system that has a limited user interface; e.g., a network printer or
residential gateway.

JavX LE can also be used on any device where JavX serial file access, or the ProvideX
OCX interface is required, but a user interface is not. For example, it could be used to
load a Java Database Connectivity (JDBC) driver to read from a MySQL or Oracle
database (JDBC drivers are available for most databases). Another use for JavX LE
may be for the purpose of copying files to/from a PDA, such as MS ActiveSync. JavX
LE will run on any J2SE or J2ME CDC-enabled platform, which includes any
platform where JavX AE and JavX SE are currently supported.

JavX LE implementations are upwardly compatible with Java-enabled devices
(Pocket PC, Windows CE) and on JavX for PC Platforms (Apple OS X, UNIX,
Linux, and MS Windows 9x,NT,2000,XP).

Available Features
For a general overview of the features available in all versions of JavX, refer to the
sections listed under Common Functionality and Limitations. JavX LE is built on
the same core classes as JavX SE and JavX AE, much of the same functionality and
limitations will apply to JavX LE. Since JavX AE is built on the same core classes as
JavX SE, the same limitations also apply to JavX AE.

Features not Supported in JavX LE
JavX AE has the same limitations as those described for JavX AE. See JavX AE
Deployment and Functionality, p.78. The primary difference between JavX LE and
other versions of JavX is that JavX LE does not have a built-in user interface. There is
no character-based, or graphical user interface built into JavX LE.

ProvideX Client-Server Reference Back 81

Client-Server Reference 5
Application Server

The Application Server is a ProvideX add-on product that allows you to create and
maintain a secure TCP/IP server environment for connecting WindX and JavX-based
implementations via MS Windows, UNIX/Linux, and MAC OS X.

This chapter documents the installation, configuration and functionality of the
ProvideX Application Server.

Activation and Product Components, p.82
Server Configuration, p.83
Running the Server, p.106
Client Configuration, p.108
Session Spawning, p.112
Session Object Properties, p.115
Customizing, p.120
Sample Setup Procedure, p.124
Troubleshooting, p.132

Enhanced Hosting Facility

This software provides an enhanced, configurable alternative to the built-in client-server
processes supplied with the ProvideX base system. While the *NTHost/*NTSlave defaults
are sufficient for establishing quick and simple client-server connections, they were never
designed for use "as is" outside of a closed local area network. Developers who intend to
expose their applications to the outside world would endeavor to build and/or acquire
additional infrastructures on top of *NTHost/*NTSlave in order to reach the minimum
security and administration requirements.
In contrast, the Application Server delivers an all-in-one ProvideX solution for protecting
and maintaining your data in adverse network environments – particularly the Internet:

• Simplified Interface. User-friendly utilities are provided for creating, configuring
and administering the different characteristics of your ProvideX client-server
applications..

Topics

5. Application Server

ProvideX Client-Server Reference Back 82

• Uses only one TCP /IP Socket. Default client-server processes in ProvideX can end up
using many different sockets depending on the implementation and the number of
clients. The Application Server architecture allows you to direct all connections
through a single socket.

• Designed for firewalls. If it is too difficult for a firewall to determine which sockets
it needs to block, it might as well be disabled. By reducing the number of sockets
needing access, the Application Server ensures that your firewall is fully
operational.

• Session Adminstration. One of the primary security features in the Application
Server is its ability to monitor and control access through session administration,
user authentication, and limiting client access.

• Optional SSL encryption. The Application Server supports use of a TCP/IP-level
Secure Socket Library, a security protocol that allows you to encrypt communications.

Activation and Product Components

The Application Server is shipped with ProvideX and it may be activated for use as a
part of the ProvideX eCommerce bundle, or as a separate add-on package. In either
case, use of this product requires a secondary-level activation on top of the base
system activation.

While the program shortcuts and configuration panels are immediately available
and can be accessed from a base system installation of ProvideX, the Application
Server itself cannot be run unless it has been properly activated. If the activation has
been recorded incorrectly, the session will fail, returning the error message: NO
VALID ACTIVATION FOUND!!.

The following software components and supporting files are required to run the
Application Server, and should be installed within the server system’s ProvideX
directory:

Note: Contact your dealer/distributor or visit the ProvideX website at www.pvx.com
for more information on product options and licensing.

*appserv/server Application Server daemon.

*appserv/config Configuration facility

*client Client-side software (included with WindX and JavX)

*server Spawning software

*appserv/config.en NOMADS panel library

*appserv/apsmesg.en Message library

*appserv/dealer.en Dealer panel library.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 83

Server Configuration
The ProvideX Application Server includes a utility for creating and setting up server
characteristics, including security and administration. The Windows interface for the
configuration utility is a NOMADS application that can be run locally via ProvideX for
Windows or by using WindX or JavX connected to a UNIX/Linux server. A
character-based method for running this utility is also available.

This utility may be launched from a shortcut supplied with the ProvideX for
Windows installation. Otherwise, the command line syntax is described as follows.

In Windows: PVXpath$ [-hd] [apscfg.ini] *appserv\config [–ARG "AsService"]
In UNIX/Linux: PVXpath$ *appserv/config

Where:

Main Console

Application servers are created and maintained from the main console of this utility.

The console is divided into several tabbed panels for viewing and/or changing different
configuration and administration options. Panel components are documented by their tab
name on the pages indicated in the list above.

The main console is also where new servers are named and created and it is where
the system administrator controls which server is currently selected to be started,
stopped or updated.

The next few pages introduce the steps necessary for creating, modifying, and deleting
an application server using this interface. The specific tab/panel descriptions and
lists of options begin after these sections.

PVXpath Path to ProvideX
-hd Command line option indicating that the utility starts with the initial

window hidden. MS Windows only.
apscfg.ini Configuration’s standard INI file. MS Windows only.
AsService Optional flag to the configuration that informs it not to allow

start/stop on the desktop if server daemons are running as Windows
services. MS Windows only.

Sessions, p.104 Server, p.86 Clients, p.90 Apps, p.93
Users, p.97 Service, p.100 Logging, p.102

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 84

Creating a New Server
cr eate

A new application server is created in this utility by entering a name in the Server
field. All information about the new server will then be stored under this name, and
it can be recalled later (by server name) for further editing. Once the server is saved,
this name can also be used to start the server from the command line via the server
daemon program (*appserv\server).

Server names are case-insensitive and may comprise any legal characters up to 20
characters in length. However, you cannot use characters less than hex 20, spaces,
nor any of the following: " < > , / \ * ? & | ; : { } () $! ` .

Modifying or Deleting Server Properties
If the configuration of any current server has been changed, you will be asked to
save those changes before proceeding to configure the next server. To delete a server,
select its name from the Server field drop list, then click Delete. All server names can
be deleted unless they are currently running.

Any changes made to fields in the Server, Client, User, Application, or Logging panels
are considered changes to the currently-selected server. To save these changes, either
click the Apply button or switch to a different server name.

Updating On-The-Fly
If you save changes to a server while it is running, the new configuration will be
applied automatically. Changes made under <Global Config> will apply to all
servers that are currently running. The update will take place unless you opted to
change TCP/IP properties, which results in a conditional update procedure
explained below.

Because application servers play "man-in-the-middle", closing the TCP/IP socket
will disconnect all connected users. If the server’s TCP/IP properties have been
changed, and the TCP/IP socket needs to be closed and re-opened, then the server
will perform the following:

• If no users are currently connected, the server will simply be updated.

• If users are currently connected, you will receive an "Ok to Continue
(Yes/No)" warning message.

• If you proceed with the changes, then all users will be disconnected, the changes
will be made, and the server will begin accepting new connections with the new
configuration.

• If you do not proceed, then the changes you made will be saved, but the
currently running server will not be updated. To update it, you will need to
either apply the changes later, or stop / start the server.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 85

Switching Between Servers
Switch to another configured server by selecting a different server name from the
Server field drop list, or by entering the name directly into the field. You can also
switch from a specific server to define <Global Config>. As mentioned earlier, if
you change any characteristics of the currently-selected server, you will be asked to
save your changes before proceeding.

Starting a Server
• From the command line, use the *appserv/server daemon program.

• From the configuration utility, click the Start button that appears under the Server
tab while the specific server name is currently selected.

Stopping a Server
• From the configuration utility, click the Stop button that appears under the Server

tab while the specific server name is currently selected.

• From a Windows OS, select Close from the right mouse menu, when clicking on
the server’s taskbar button.

Under UNIX/Linux, use Kill -2 pid (where pid is the server’s process ID).

Server Status
Opposite to the Server field is the server Status indicator. This reports if the
currently-selected server is Running or Stopped, Starting or Stopping, and when an
Update is in progress. The status is only updated when:

• Moving from one tab to the next,

• Selecting the Refresh button on the Session tab,

• Attempting to Start or Stop,

• Clicking the Apply button.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 86

Server Tab – Defining Server Attributes
Ser ver

The Server panel is where the primary server attributes are configured. You can also
Start, Stop, Modify, Create, or Delete the currently-selected server. Refer to earlier
sections under Server Configuration for general details on creating, deleting, and
switching between servers.

TCP/IP Fields
Socket: TCP/IP port number (socket) that the server will open and listen for

requests on. This socket will be used for all aspects of the server, from
the initial connections through handling of session traffic. Select any
valid TCP/IP port from 1 to 65535. Sockets 1 to 1024 are usually
governed by the OS and only processes running as root, or users
classed as Administrators, will be allowed to open sockets in this range.

KeepAlives: Checkbox for using TCP/IP KeepAlives on the socket. If this
option is selected, the OS will send KeepAlive packets to the
server- and client-side processes to check if they are still
connected. The amount of time before sending KeepAlives, the
number of KeepAlives sent, and the interval between sending
them are configured at the OS level.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 87

Options Fields

Encrypt: Checkbox for using SSL encryption on the socket. If this option is
selected, the application server will only accept connections from
clients who use SSL encryption. All traffic between the server
and the client processes will be SSL encrypted. If on, a valid SSL
certificate file must be entered (below).

Certificate: SSL certificate file to be used for SSL-encrypted communications. This
field is only active if SSL encryption is turned on. The file must be in
the standard format that ProvideX SSL requires, which is a plain text
file containing both the X509 certificate and the private key.

Show Sessions
in Taskbar

Windows option that determines whether or not the client
sessions that get launched show up as a button on the Window’s
task bar or not.

Use CmdAsUser
CmdAsUs er

Windows option that determines whether or not the application
server is to use the CmdAsUser utility to launch sessions on the
server as specific users.

Default Umask: UNIX/Linux option for setting the umask to use when running
programs that are not configured as applications. Applications
that are configured will use their own setting.

Detach Spawns
via Nohup

UNIX/Linux option to indicate that any spawns from within this
session will use nohup. The use of nohup determines if a process
is to remain attached (or not) to the process that spawned it. If it
is attached, then the child process will terminate when the
session the parent is running has terminated.

This is the default setting for programs that are run, but not
configured, as applications. Applications that are configured will
use their own setting.

Server’s INI: Windows option for providing the name of the INI file to use
for the *appserv/server daemon. It is only required if you
use the Start button to start the server daemons from within the
configuration utility.

Note: CmdAsUser is a third party program that allows Windows
NT, 2000, and XP software to be run as a specific user. This utility
is not supported by Sage Software Canada Ltd.

Note: If the following fields are not specified, then the INI file
and start-in directory of the server daemon itself will be used
instead, by default.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 88

Default User Fields
These are for configuring default user characteristics for running server-side
processes and are only applicable when running in a UNIX/Linux environment, or
in MS Windows (in conjunction with CmdAsUser).

Start-In
Directory:

Directory where the *appserver/server daemon is to be
started in. It is only required if you use the Start button to start the
server daemons from within the configuration utility.

Run All as
Default User:

When this checkbox is selected, all client session requests will have
their server-side process run as the user given in User Name. Any
user name listed in the Users Tab – Current Users Properties
will be ignored. This causes all ProvideX processes on the server to
be run using the default user ID.

Under Windows, all server-side processes will be run as the
currently logged-on user, or whatever user name is set when
running this software as a service.

In a UNIX/Linux environment, the application server will use
DEF UID to launch new sessions, if DEF UID is supported by the
operating system. Otherwise, the "su" command will be used.

There is no provision in the "su" command to pass the user's
password as an argument; therefore, the only way you can run the
application server, and have it launch processes as other users, is if
the application server daemons are running as "root"; i.e., it does
not require a password to run processes as other users.

User Name: This provides the user name that the server-side ProvideX sessions
will be run as. (This has no effect when running Windows or when
not using CmdAsUser in a Windows environment.)

Where the client is not forced to log on, any session request that is
not preceded by a logon is classified as an anonymous user. The
default user name is used to run any server-side ProvideX session
for any connecting anonymous user.

User Password: Windows option for setting the password for the user ID given in
the User Name. It is only used by the CmdAsUser utility and is
not required under UNIX/Linux.

User Domain: Windows option for specifying the domain name for the user ID
given in the User Name. It is only used by the CmdAsUser utility
and is not required under UNIX/Linux. This is only used when
Run All as Default User is set, or when sessions connect
anonymously.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 89

State Fields
This section allows an administrator to control the current state of the application
server being configured.:

Disable Server: Checkbox to determine whether or not this server can be started
(if currently not running). If disabled, the server will terminate
before it starts accepting connections.

Disable New
Connections:

Checkbox for disabling new sessions (for maintenance purposes).
If set, then a Reason should be specified to present to users
attempting to connect.

Only new sessions that are started from the client’s PC will be
disabled — it does not affect currently-connected users. Current
users will still be able to spawn additional sessions, but new
connections via *CLIENT will be refused.

This setting does not affect the configuration system's ability to
talk to the server daemons.

Disable All
Connections:

Checkbox to prevent all new sessions from being started. This
includes new Client sessions (from *CLIENT or JavX) as well as
any newly-spawned sessions from currently connected users.
This will not affect currently-connected users, but it will
prevent current users or potential users from starting new
sessions of any kind.

This setting does not affect the configuration system's ability to
talk to the server daemons.

Reason: Descriptive reason for disabling the server. If either Disable
New Connections or Disable All Connections checkboxes are
set, then the user will receive an error message informing them
that the server is disabled for the reason provided.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 90

Clients Tab – Defining Client Attributes
Client s

The Clients panel is used to configure some general properties of the server as they
relate to the clients that will be connecting.

Clients Fields
This section under the Clients tab allows an administrator to control the current state
of the application server being configured:

Client Must
Login:

Checkbox to prevent anonymous sessions. If selected, the server
must receive a valid login request before it receives a session request.
In this case, the user on the client-side must log in with a valid user
name and password as configured in the Users panel. Only valid
clients are allowed to request that sessions be run.

Currently-connected clients whose software does a spawn within
the server-side process, do not need to log in again. Sessions
"spawned" from within a current session pick up the current
user’s characteristics.

If not selected, then anonymous sessions are accepted pending
other validation. The *CLIENT program tries to establish an
anonymous session when it first connects.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 91

Using the -LOGIN option on the *CLIENT program, it is possible to
have both anonymous and logged-on clients. This argument tells
the *CLIENT software to skip the anonymous session attempt,
process the Login panel, and log in the user. Using this method, it
is possible to have both types of users (where validated users have
more privileges than anonymous ones).

Allow
Anonymous
Console Access:

Checkbox to allow users that have not given a valid logon to access
the ProvideX console mode. From a security standpoint, anonymous
users should never be given this access; however, in a trusted
environment you may wish to set this option to simplify connections
to the server for development purposes.

ReConnect: Options for controlling the ability of client sessions to reconnect
to the server if their network connection fails or is interrupted.
The settings are as follows:

None Never allow a client to reconnect if their network
connection fails.

Prompted Inform the client that their connection has failed and
ask if they wish to reconnect. This also informs the
user if the reconnection is successful or not.

Automatic Reconnect automatically, then inform the user that
their session was interrupted and has been
reconnected.

Hidden Reconnect automatically without informing the user
that their session had been interrupted/reconnected.

Max Total
Clients:

Maximum number of unique clients who may be connected to the
server at one time. If set to 0, then there is no limit. This does not
affect the number of active connections or the number of spawned
sessions any one client may have.

The number of unique clients is dependent on the Client Must
Login option. If the Client Must Login option is selected, then the
number of unique clients is the number of different user names that
may log in. Otherwise, the number of unique clients is determined
by the number of different client IP Addresses that the server sees.

Max Total
Sessions:

Maximum number of sessions this server will allow at any one time.
If set to 0, then there is no limit. The total is determined as a count of
both client- and spawn-connected sessions.

Note: Anonymous users can only request and run applications that
are configured within the Apps panel and cannot run any other
ProvideX program on the server.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 92

Timeouts
This section under the Clients tab represents the timeout values (in seconds) for
completing certain session-related operations:

Clients will only be able to reconnect to their sessions within the same instance of the
client. If the client exits and its process terminates, then it will not have the
information required to reconnect – therefore, a reconnect would not be possible.

The client may not notice that its connection to the server has been severed. The
client will only notice this happening if the user is currently performing some task
within the client. That is, the client may sit idle for an extended period of time and
not notice that the connection had been severed when a user begins to type or click
the mouse - the server daemons reconnect timeout may have already expired and
user will not be able reconnect.

Setting a long duration for a reconnect timeout may leave processes running on the
server for that entire time, consuming server resources until their timeout expires.

New
Connections:

Time limit (in seconds) that a connecting client has to make its first
valid request. Any connection that does not make a request in this
time will be disconnected. This keeps other TCP/IP-based software
(port scanners or hackers) from tying up server resources.

User Requests: Time limit (in seconds) that a connected client has to make any
additional requests after their first valid request. Setting this value
keeps the server from holding open or using up resources when a
client may have disconnected without notifying the server while in
the process of making requests.

Admin
Requests:

Time limit (in seconds) for internal administration requests between
the Configuration system and running server daemons.

ReConnect
Timeout:

Time limit (in seconds) that a connecting client has to perform a
reconnect from the moment the Application Server daemon realizes
that the connection has been severed. Server-side processes will be
kept running for this length of time before terminating. Once
terminated, the client will not be able to reconnect to that session.

Note: When the reconnect limit is set to a value other than 0, the Application Server
daemon will maintain a 64K buffer of data for each ProvideX process serviced, and the
Client will maintain a 64K buffer of data it last sent to the server.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 93

Apps Tab – Application Listing
Apps

The Apps listing panel defines the applications that may be run by the currently-selected
server. Application entries may be created, changed, or deleted using this panel:

The listing for applications recognized by the current server is defined as follows:

To view or modify properties of a listed application, highlight the application entry and
select the Details button. To create a new application, select the New button. To
define an application that is available to all configured servers, switch the Server
field to <Global Config>. Application details are explained below.

Include Global
Apps

Checkbox to determine whether or not the current server should use
the globally configured applications (from the <Global Config>) in
addition to any locally-configured applications.

Type Indicates whether or not an application is L (configured locally
within this server) or G (configured within the <Global Config>).

Deny Checkbox (on/off) method for denying access to listed application.

Application
Name

Case-insensitive application name. This is the name used in *Client
or JavX software to identify and run the application.

Command Line Representation of ProvideX command line syntax for the defined
application. This syntax is not in fact used by the application server,
as it requires other properties and programs, but is simply a way to
describe properties used by the application when it is launched.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 94

Apps Tab – Details
The applications details panel is invoked by selecting the Details or New button
from the Apps panel. It allows an administrator to configure application properties.

Application Fields
These fields in the Apps details panel provide the name for, and properties of, a
given application:
App Name: Descriptive name to identify a set of application properties. These are

the properties it takes to run an application.

Each application is created, referenced, and stored by using a
descriptive name. This name is also used in *CLIENT or JavX
command line syntax to request the specific application. The name
entered may contain any legal characters up to 40 characters in length.
You cannot use a character less than hex 20 nor any of the following:
"<> ,/*?&|;:{}()$!` Application names are case-insensitive.

ProvideX EXE: Location on the server of the ProvideX executable to run this
application. A null or <Default> setting indicates using the same
executable that the application server daemon itself is using.

Server INI: Windows option for naming the INI file to use for the server-side
ProvideX process. A null or <Default> setting indicates using the
same INI that the application server daemon itself is using.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 95

Options
These checkboxes in the Apps details panel provide on/off functionality for
Application properties.

Lead Program: Actual name of the ProvideX program to be run, known in ProvideX
as the lead program. If null or CONSOLE, then this is classified as a
console session and is subject to console restrictions.

Extra CMD
Options:

Options that are to go between the lead program name and any
statement on the command line. It is intended for system
parameter settings; e.g., -XT=1 or -XT=0 -NE=1. Extra
command line options are supplied to the server-side process
after the lead program name, but before any -ARG values; e.g.,
ServSideCMD "LeadProgram" XtraCMDoptions$ -ARG ...
The client can send additional command line arguments. Any
such additional arguments will be added to the end of this
argument string.

Arguments: Command line arguments for the server-side process. These
arguments will be available to the launching process via the ARG()
function and NAR system variable. These are supplied to the server
side process as –ARG values; e.g.,

ServSideCMD "LeadProgram" -ARG arguments$

Start-In
Directory:

Server directory where the application server is to launch the process
for running the specified lead program. This will become the home
working directory (HWD) of the process.

Disable
Application

Checkbox to deny access for all users; otherwise, the application will
be available to all users who are configured in this server.

Allow Client
Extra CMD
Options

Checkbox to enable extra command line options. If this is not
selected, extra options sent by a client will be ignored. Extra options
received by the server are in addition to the application's own; e.g,

ServSideCMD "LeadProgram" ServXtraCMDoptions$ [-ARG ...]

Allow Client
Arguments

Checkbox to enable clients to send additional command line
Arguments. Otherwise, such arguments sent by a client will be
ignored. Extra arguments sent by a client are used in addition to the
application’s predefined arguments; e.g.,

ServSideCMD "LeadProgram" -ARG App_Args$ AddClient_Args$

Allow Client to
Set FID

Checkbox to set FID(0) for the server side process to match the value
used/requested by the client system. Otherwise, the server-side
process lets ProvideX select whatever FID(0) value it chooses.

Allow Client to
Set Start-In
Directory

Checkbox to enable the client to request a different Start-In
directory for the server-side process. Otherwise, any such request
by a client is ignored.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 96

Clients Fields
These fields in the Apps details panel can be used to control the type (WindX, JavX,
or both) as well as the minimum/maximum version numbers of the client software
accessing this application.

Version codes are 9 characters in length, split into 2 parts. The first part is the 7-digit
software revision; i.e., TCB(29). The second part is the 2-digit thin-client version
number; i.e., TCB(88). When the application server evaluates the minimum /
maximum versions numbers, it evaluates the 2 parts separately. If the 7-digit
software revision number is 0, then no check will be made. If the 2-digit internal
client level is 0, then no check will be made.

You can set just the software revision, just the internal client level, or both; e.g.,

0.00.0000/00 No level checking is performed.
5.01.0000/00 Only a software level of "5.01.0000" checked.
0.00.0000/08 Only an internal client level of "08" is checked.
5.01.0123/09 Both the software revision and the internal client level are checked.

OS Level
These fields in the Apps details panel set properties needed for running applications
under UNIX/Linux.

Client Type: Client software permitted to access this application. Valid settings
are: Any Client Type, WindX Clients Only, or JavX Clients Only.

WindX Ver: Minimum version of WindX that may run this application. See the
discussion on version codes (below) for details.

Max WindX Ver: Maximum version of WindX that may run this application. See the
discussion on version codes (below) for details.

JavX Ver: Minimum version of JavX that may run this application. See the
discussion on version codes (below) for details.

Max JavX Ver: Maximum version of WindX that may run this application. See the
discussion on version codes (below) for details.

Default Umask: Umask setting for running this application. Note, not all
operating systems have this override.

Detach Spawns
via Nohup

Checkbox to determine whether or not any spawns from within this
application session will use nohup. The use of nohup determines if
a process is to remain attached (or not) to the process that spawned
it; and, if it is attached, then the child process will terminate when
the session the parent is running has terminated.

Additional
Environment
Vars:

Operating system environment variables for the process that is to
run this application.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 97

Users Tab – Valid User Listing
Us er s

The User panel lists all of the valid or configured users that may log into this server.:

The listing for users who may log on to the current server is defined as follows:

Include Global
Users

Checkbox to determine whether or not the current server should use
the globally-configured user listing (from the <Global Config>) in
addition to any locally-configured users.

Type Indicates whether or not a user name is L (configured locally within
this server) or G (configured within the <Global Config>).

Remote User
Name:

Case-insensitive name that the user logs in as. This is the login ID
users must supply to their *Client or JavX software.

Deny: Checkbox (on/off) method for denying access to the listed user.

Server User
Name

User ID associated with this user when running processes on the
server. The User Detail panel allows you to associate the user ID of
the remote users with a user ID the server can use.

Sessions Indicates the number of sessions a listed user is currently running.
The number of c (client) and s (spawned) sessions is given.

Last Login Date the user last logged onto any of the configured servers.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 98

To view or modify properties of a listed user name, highlight a user entry and select the
Details button. To create a new remote user name, select the New button. To define a
users that has access to all configured servers, switch the Server field to <Global
Config>. User details are explained below.

Users Tab – Current Users Properties
This panel is invoked by selecting the Details or New button from the Users panel. It
allows an administrator to configure a user’s abilities to access the server.

Remote User Fields
These fields in the User details panel define access for a remote user name:
Remote User
Name:

Case-insensitive login name for the remote user. This is the name the
user would enter in any Login dialogue on the remote workstation
running *CLIENT or JavX. (Maximum 60 characters). Internally this
name is the one that appears within a login request to the server.

Full Name: Descriptive name for the remote user provided for reference.

Password: Password the user must enter while logging into the server.

User Can
Change
Password

Checkbox to enable users to change their password from the
*CLIENT or JavX programs.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 99

Miscellaneous
These options in the user details panel control user access.

Server User
These options in the user details panel allow you to define the name, password and
Windows domain that the server uses when launching processes on the server for a
remote user. These settings are only in effect when running either under a
UNIX/Linux environment, or when using CmdAsUser in a Windows environment.

Password
Change at Next
Login

Checkbox to force the user to change a password the next time they
log into the application server. Internally, when set, the server
refuses any command from a user other than a "PASSWORD"
change request after it receives a "LOGIN" request from a client
workstation. Once a successful password change request has been
completed, this setting is automatically turned off by the server.

Deny Access Checkbox to deny access. When selected, the user will receive an
Invalid Login message when they attempt to log in.

Enable Console
Mode Access

Checkbox to allow the user to access a ProvideX console prompt,
either by sending a null, or by using CONSOLE as an application
name. Also, this setting controls access to ProvideX console mode for
all spawned sessions of this user.

Run Any
Program /
Configured App

This field determines what the user may run: any program, or
configured applications.

Run Configured App means that the listed user will have access
only to those application names listed on the Apps dialogue.

Run Any Program means the user will be able to access any
application defined on the Apps dialog, and if the application is not
found, then the application name given will be used as the lead
program name of an application to run.

For example, if a user is set to Run Any Program, and if the
requested application name Test is not configured in the Apps
dialogue, then the server will run Test if it exists.

Note: The setting in the Server tab called Run All as Default User has an affect on these
settings — when this option is selected, these settings are ignored.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 100

Service Tab – Windows Services
Service

The Service Properties panel sets up the application server daemon to be run as a
Windows service.

Server User
Name Same as
Remote User
Name

Checkbox to enable the Remote User Name and Password along,
with the default user’s (or current Windows Domain) to be used to
start the server process.

Otherwise, the following values must be set:

Server User
Name:

User ID on the server for running these processes.

Password: Windows password required for the user account given to run
processes on this server as the Server User Name.

Domain: Windows domain name required for the user account given to run
these processes on this server. The domain defaults to the domain
name of the currently logged in user if available.

Name: A unique service name, generated automatically.

Display Name:
Description:

These are what the users will see displayed in the MS Windows
Services listing.

Start Type: Options to set up the Windows service for Automatic or Manual
start or to have it Disabled.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 101

To start or stop the service, use the Start/Stop buttons on the Server Tab – Defining
Server Attributes, p.86. If the service is not installed, then selecting Start will start it
on the Windows desktop.

Running each server daemon as a separate service can cause difficulties with
ProvideX user count licensing. If you have more than one daemon running, and they
are set to interact with the desktop, then they can share the total user license count.
However, if they do not interact with the desktop, then they will not be able to share
the user count.

Example:
There are two server daemons (A and B) and 5 workstations (1,2,3,4 and 5). If all 5
connect to Daemon A, you will use 6 user slots - one for the daemon and one for
each of the WindX workstations 1 through 5.

If all 5 of those workstations also connect to server B, and each runs one session, then
you will use another 6 user slots - one for the B server daemon and one for each of
the 5 workstations. This means you will have used 12 user slots in total. However, if
you set both daemons A and B to interact with the desktop, and each of the 5
workstations connect one session to both server A and server B, then you will only
use a total of 6 user slots, rather than a total of 12.

Domain:
User Name:
Password:

If the service is to run as a user other than “local system”, then
these properties may be set.

Interact With
Desktop

Checkbox to enable access to the desktop. This is only valid when
running as the "local system" account (not as another user):

Install:
Un-Install:

Adds or removes the service from Windows.

Note: Changing any NT Service properties when the App Server daemon is running
will require the daemon to be stopped, un-installed, re-installed and re-started.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 102

Logging Tab – List of Log Files
Logging

The Logging panel allows administrators to maintain aspects of the Application
Server’s logging functions. All log files are saved as plain ASCII text files in a
subdirectory of the *appserv directory, which has the same name as the server.

Use the check box in the Enable column to select logging of the different listed actions.

Log All Server
Errors

Log of internal errors involving the application server daemon. Errors
encountered in this log should be reported immediately.

Log All
Connections

Simple log of all machines that connect or disconnect from the
server, including clients and server side connections.

Log Any Invalid
Requests

Log of all the requests that are invalid, unknown, or not supported,
and of all the responses from the server. An example of an invalid
request would be when someone opens the application server
daemon’s socket and attempts an HTTP or FTP request.

Log All Client
Requests

Log of acceptable requests made by client workstations, and the
response they received from the server.

Log All
Administrator
Requests

Log of administrative commands received by the server daemon and
its response to that request. Currently, only the Application Server’s
Configuration tool makes administrative requests.

Log All Internal
Housekeeping
Requests

Log of internal requests and their responses. These are requests that
the servers made when their processes were invoked, as well as
server and client requests when their processes were spawned.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 103

Logging Tab – Log Viewer
This is invoked from the Logging panel by clicking the View button for a selected log.

All log files are in ASCII text and follow a standard format where applicable. The
pipe ' | ' symbol is used as the separator between items of information, as shown in
the #format statement. The * asterisk is used in place of a ProvideX $8A$ field
separator. All passwords in valid requests are hidden using 10 periods (……….).

Logs typically show the following information:

• Date / Time the entry was made.

• IP address and internal handle (port) number of the connection making the
request.

• Request that was made.

• Response from the server.

Log All
Applications
Launched

Log of all the sessions that clients requested and the command lines
the server used to launch those sessions.

View Button for viewing currently-selected log. See Log Viewer, below.

Clear / Clear All Buttons for clearing selected/all logs.

Rotate Button to rename all logs with a leading date; e.g.,
20050622.140253.error.log YYYYMMDD.HHMMSS.*

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 104

Sessions Tab – Current Sessions Listing
Ses sions

The Sessions panel lists (and allows termination of) currently- running sessions.

Options for viewing sessions include:

The list is purged each time the server is started. Contents of the sessions listing is
defined as follows:

View Connected Only Currently running sessions.

View Terminated Only Information about sessions that are no longer running.

View All Both active and terminated sessions in a single listing.

User Remote user name that the user signed on to the Application Server
with to start their session.

Client Type of client software the client workstation is using to access the
server, either WindX or JavX.

Type Specific type of session the user is running, either Client or Spawn.

Status State of the session, either Connected or Terminated.

Application Name of the application the user requested to be run, or the lead
program if the application was not configured.

Connect Time Either the amount of time (in days, hours, minutes, seconds) an
active session has been running, or the amount of time a terminated
session had been running prior to termination.

5. Application Server Server Configuration

ProvideX Client-Server Reference Back 105

Sessions Tab – Current Sessions Listing
This is invoked from the Sessions panel by clicking the Details button for a selected
session. It provides further information about the session

Refresh Button to update the sessions list. The list will also be refreshed
whenever you switch back from another tab.

Details Button to display an new window for details on the currently-
selected session. Session details are explained below.

Terminate Button to drop a session. This disconnects the user and terminates
the session on the server, no matter what that session is doing.

Interrupt Button to interrupt a session and drop the user into console mode
on the client side (for troubleshooting purposes).

Note: Terminating without knowing the state of a session is
dangerous since you could interrupt critical file processing. Exercise
extreme caution when using this option.

Note: The columns shown in the session listing are customizable. Right-click any
column header to select which columns are listed. Drag on the headers to change the
order of the columns.

5. Application Server Running the Server

ProvideX Client-Server Reference Back 106

Scroll down the list for complete details of the session, organized as follows:

• Session ID, its status, how and when the session was created or terminated, and
the running time of the session.

• Client's user ID, IP address, operating system, software, handle numbers, process
ID’s, and information from the user’s workstation itself.

• Which application the user chose to run and the properties used to launch it.
• User name that was used by the process on the server as well as the server’s

process ID, handles, and TCP/IP socket parameters.

Running the Server
The operation side of the Application Server is handled by the server daemon, a
platform-independent ProvideX program called *appserv/server. This program
is designed to run as a background task and it is responsible for:

• Listening for client/server connections

• Responding to requests

• Launching new sessions

• Moving traffic between the client- and server-side processes.

The Start-In directory for the server daemon is an important consideration. When the
daemon launches new processes (applications) it will start them in the same
directory that the server daemon was started in. This occurs unless either the
application requested had a designated Start-In directory, or the client requested a
specific Start-In directory.

Associated files should be given a path that is relative to the Start-In directory of the
server daemon.

Command Line Syntax

The server daemon command line syntax is described as follows.

In Windows: PVXpath$ [state] [ini] *appserv\server –ARG ServerName
In UNIX/Linux: PVXpath$ *appserv/server –ARG ServerName

Where:

PVXpath Path to ProvideX
state Option setting for governing the initial WindX window. Either null

for normal window, -mn to start minimized, –hd to start hidden.
ini Optional user-defined INI file (or ..\Lib_appserv\apssrv.ini).

Do not use a * in the INI path, as ProvideX does not resolve them as
it does program names. MS Windows only.

ServerName Name of a server defined in the configuration. Case-insensitive.
May be quoted.

5. Application Server Running the Server

ProvideX Client-Server Reference Back 107

Starting the Server Daemon

The following are examples of a start command for an application server daemon.

Under Windows
If the Start-In directory is C:\Pvx; e.g.,

C:\Pvx\Pvxwin32.exe -mn "C:\Pvx\Lib_appserv\appsrv.ini"
*appserv\server -ARG "MainServer"

Under UNIX/Linux
Method 1. From a shell script; e.g.,

#!/bin/sh
TERM=ansi; export TERM
cd /usr/pvx
/usr/pvx/pvx *appserv/server -ARG MainServer </dev/null >/dev/null 2>&1

Method 2. Directly from /etc/inittab. This uses "/ "as its starting directory; e.g.,

pvd1:2345:respawn:/usr/pvx/pvx *appserv/server -ARG MainServer
</dev/null >/dev/null 2>&1

Method 3. From the /etc/rc set of directories. (Linux method). Create a file in
/etc/init.d. The simplest method is to copy an existing script from that directory
and modify it to start the above command line. The script should contain the
START() and STOP() functions required. Use symbolic links in the /etc/rc?.d
directories to link to your script.

Stopping the Server Daemon

Under Windows
Right click on the ProvideX Application Server icon for the server daemon in the
Windows Taskbar, then select close or interrupt.

Under UNIX/Linux
Send a SIGBREAK to the server daemon process; e.g., Kill -2 pid (pid is the
process ID of the server daemon).

5. Application Server Client Configuration

ProvideX Client-Server Reference Back 108

Client Configuration
A WindX or JavX thin client implementation is required in order to establish a user
interface connection from a remote system to the ProvideX Application Server. The
syntax elements required to launch thin-clients using a connection to the ProvideX
Application Server are outlined in the sections below.

WindX The Windows thin-client employs the Application Server *CLIENT program to connect
to the server. *CLIENT is also used by the spawning process to initiate new sessions on
the client workstation. Complete details on launching and using the WindX thin-client
are provided in Chapter 3.

The command line syntax is described as follows:

PVXpath$ [state] [ini] *client –ARG ServName [Socket] ["App"] [parms]

Where

*CLIENT Dashed Parameters
The following parameters may be included on the command line in any order as long
as they are entered after the lead program name, "App" (or Socket, if no application is
given):

PVXpath Path to ProvideX (e.g., c:\pvx\pvxwin32.exe)

state Option setting for governing the initial WindX window. Either null for
normal window, -mn to start minimized, –hd to start hidden.

ini Optional user-defined INI file. The initial session will use this INI for
its client-side ProvideX characteristics. Spawned sessions will re-use
the same INI, unless specifically overridden during the spawn.

ServName IP Address or DNS resolvable name of the server to connect to.

Socket TCP/IP port (socket) that the server daemon is listening to. The
default is 10000.

"App" Optional lead program or configured application name that the server
is to run. Quotes are required if it contains spaces. If Null or not given,
then the request is for a ProvideX Console Mode Session.

parms Optional dashed parameters: -FID=xxx -DIR=xxx -CMD=xxx
-ARG=xxx -SSL -LOGIN -KA -LANG=xx -USR1=xxx -USR2=xxx
-USR3=xxx -USR4=xxx. These parameters are explained below.

-FID=xxx FID(0) value requested. This is an override value, whereby you can
request a specific FID(0) for this session. The Application
configuration may be set to not allow such an override. The
maximum FID(0) value is 12 characters (quotes are optional).

Example: -FID=T999 or -FID="JoesPC"

5. Application Server Client Configuration

ProvideX Client-Server Reference Back 109

-DIR=xxx Server-side Start-In directory. This is an override value, whereby
you can request a specific directory to start the server session in.
The Application Configuration may be set to not allow such an
override (quoting of value is optional even if the path contains
spaces).

-CMD=xxx This is an "addition to" value, whereby you can request additional
command line options for the server-side process.

Examples: -CMD=-XT=1 or -CMD=-XT=0 -NE=1 or
-CMD="-XT=0 -NE=1"

Extra command line options are supplied to the server-side process
after the program name, but before any –ARG xxx values; i.e.,
Server-Side_Process_Command Application XtraCmdLineOptions$
-ARG … …

The application configuration may be set to refuse such an addition
(quoting is optional, but required if there are spaces).

-ARG=xxx This is an "addition to" value, whereby you can request additional
command line arguments for the server-side process. These are in
addition to any application configured command line arguments.
Extra command line arguments are supplied to the server-side
process after any configured –ARG values; i.e.,
Server-Side_Process_Command Application$ -ARG arg1 arg2
ExtraArg1 ExtraArg2

The application configuration may be set to refuse such an addition
(quoting is optional, but required if there are spaces).

-SSL Indication that the *CLIENT program is to connect to the server
using SSL. If the server is using SSL, the client must also use it.

-LOGIN Forces a login to the server. By default, *CLIENT will first attempt an
anonymous connection to the server. Depending on the server’s
configuration, the server may accept anonymous requests or it may
require a login. If the server is set for login, then the user is
presented with the login screen.

By setting –LOGIN, you are telling the *CLIENT program to skip the
attempt at an anonymous session and force the user to log in.

5. Application Server Client Configuration

ProvideX Client-Server Reference Back 110

JavX The client-side software for accessing the application server is built into the Java-based
thin-client. To use the application server with JavX, follow the standard documented
methods for starting a JavX application from the command line, or from an applet tag on
a Web Page. Complete details on launching and using the JavX thin-client are provided
in Chapter 4.

JavX accepts a variable called ARGS within a web page. To use the application server,
pass APPLICATIONSERVER=TRUE within the arguments, and then pass any other
argument references necessary to start the session. The argument listing for possible use
in the JavX ARGS parameter is described below:

ApplicationServer=TRUE

Required parameter. If not given, JavX will default to the *NTHOST
method which will fail against an application server daemon.

Server=ServerName
Either the IP address or DNS-resolvable machine name of server.

Port=SocketNum
The TCP/IP socket that the server daemon will listen to.

Program=ProgName
The name of the application or program to run. For a console mode
session, pass either null or CONSOLE.

Login=TRUE

Optional parameter. If given, then JavX forces the client to login. If not
given, then an anonymous session is attempted first.

-LANG=xx Two-character Language Code for displaying message boxes and
dialogue information; e.g, -LANG=EN for english.
The following rules are used to select the correct language suffix. An
attempt is made to load the apsmesg.?? message library in a specific
order. If an attempt succeeds, then that is considered to be the correct
language suffix for all message library and NOMADS Panel library
files. Attempts will continue until successful or "en" is chosen as the
default.
The order of the attempts is: #1 - %LANG$ Global variable set
possibly via a START_UP program, #2 - Environment variable
PVXLANG, #3 - Environment variable LANG, #4 - Default of EN.

-KA Indication that the client is to use TCP/IP KeepAlives on its end of
the connection.

-USR1=xxx
to
–USR4=xxx

You may specify user defined strings containing any information
you wish. This information will be available to your server side
process from the %APS object as properties. If the strings supplied
contain spaces, then you should enclose the string in quotes; e.g.,
-USR1="My Directory Info"

5. Application Server Client Configuration

ProvideX Client-Server Reference Back 111

ClientFID=Value
Optional parameter. The value of the FID(0) the client wants the server
to use (may be ignored by the server).

ClientStartInDirectory=Value
Optional parameter. The start-in directory where the server will run the
application (may be ignored by the server).

ClientCMDOptions=Value
Optional parameter. Extra command line options that may be passed to
the server (may be ignored by the server).\

ClientArguments=Value
Optional parameter. Additional command line arguments (-ARG) which
are passed to the server (may be ignored by the server).

Sample Configuration
The following is a sample JavX configuration for use as an application server client:

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" width="200"
height="50" align="baseline"
codebase="http://java.sun.com/products/plugin/1.3/jinstall-13-
win32.cab#Version=1,3,0,0">

<PARAM NAME="code" VALUE="NetworkClientApplet.class">
<PARAM NAME="type" VALUE="application/x-java applet;version=1.3">
<PARAM NAME="args" VALUE="ApplicationServer=True;

server=www.mydomain.com;
program=myprog.pvx;
port=10000; ">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.3" width="200"
height="50" align="baseline" code="NetworkClientApplet.class"
args="applicationserver=true;server=www.somedomain.com;
program=myprog.pvx; port=10000;"
pluginspage="http://java.sun.com/products/plugin/1.3/plugininstall. html">

<NOEMBED>
No JDK 1.3 support for JavX
</EMBED>
</COMMENT>
</OBJECT>

The following example launches JavX for a connection to the application server:

java -jar JavX.jar "ApplicationServer=True; Server=192.192.192.192;
Port=20000; Program=Console; Login=True"

Note: Arguments to JavX within the ARGS parameter must be semi-colon separated.

5. Application Server Session Spawning

ProvideX Client-Server Reference Back 112

Session Spawning
The ProvideX Application Server also includes a component, *SERVER, that can be
run on the server to programmatically establish a new independent session of
ProvideX within which another application may be run. This is commonly referred
to as spawning a new session.

The *SERVER program takes information from the current session of ProvideX
regarding the application server, and information from the programmer about what
to run. It launches a new instance of ProvideX on the server using the credentials of
the user from the current session, while also forcing the client’s workstation to start a
new instance of the client software.

The *SERVER program generates a session ticket for the application server and
informs both the new server-side process and the client-side process about the
session. At this point, the new server- and client-side processes connect to the
application server and begin a new independent session. This session will be
running the application with the characteristics for which the programmer coded,
within the CALL list of the *SERVER program.

The session of ProvideX which is issuing the CALL to the *SERVER;SPAWN
command must itself be an application server-connected session, from either a
*CLIENT or previous *SERVER;SPAWN.

The *SERVER program has two line label entry points: Launch, which is an internal
entry point used by newly-invoked processes on the server, and Spawn, which is an
entry point used by programmers to spawn new independent sessions of ProvideX
and the applicable client on the workstation.

The command line syntax is described as follows:

CALL "*SERVER;SPAWN",LeadPrg$,AppName$,StartInDir$,ServINI$,ClientINI$,
ClientsState$, ExCMDOpts$,Args$,FIDVal$,NoHup$

Where

Note: This process requires WindX version 5.10 or higher, or JavX version 1.10 or
higher.

LeadPrg$ Either null, indicating a console session, or a valid pathname to a
ProvideX program.

AppName$ Either null, or a descriptive name to appear in the configurator’s
session listing.

StartInDir$ Either null, indicating the current directory, or a specific directory
where the server-side process is to start.

5. Application Server Session Spawning

ProvideX Client-Server Reference Back 113

ServINI$ Either null, or a valid pathname to an INI on the server to use for
this new session. If it is null, then the INI used for the new
ProvideX session on the server will be the same as that for the
current session.

ClientINI$ WindX clients only. Either null in which case the WindX client will
launch a new instance using the same INI it is currently using, or a
valid pathname to an INI on the client PC for the new WindX
process to use.

ClientsState$ Allows you to control the initial viewing state of the new process
on the client. This is a string of one-character options:

H Hide initial dialogue
M Minimize initial dialogue
N Show new process dialogue in the "Normal" state
X Maximize new process dialogue (currently not implemented)
E JavX only. Embed new process into the browser’s window
F JavX only. Float new process dialogue above browser window

ExCMDOpts$ Extra command line options for server-side process, whereby you
can request additional command line options for the server-side
process. (May be null if no arguments are required.)

Examples: "-XT=1" or "XT=0 -NE=1"

Extra command line options are supplied to the server-side process
after the program name, but before any –ARG values; e.g.,

ServSideCommand LeadProgram$ ExCmdOpts$ -ARG …

Args$ Additional command line arguments for the server-side process,
whereby you can request command line arguments for the
server-side process. (May be null if no arguments are required.)
Embedded quotes should be used as necessary.

Extra command line arguments are supplied to the server-side
process as –ARG values; i.e.,

ServSideCommand LeadProgram$ -ARG Args$

FIDVal$ The FID(0) value requested. If this value is null, then the newly-
spawned session will have the same FID(0) value as the current
session. The maximum FID(0) value is 12 characters.

5. Application Server Session Spawning

ProvideX Client-Server Reference Back 114

Additional Notes About Spawning
• The newly-spawned session will be spawned as the current user.

• If the current session (the one doing the *SERVER;SPAWN) is SSL-connected, then
the spawned session will also be SSL-connected.

• Access to ProvideX console mode for *SERVER;SPAWN sessions is governed by the
Application Server’s configuration. If the user was not allowed to access console
mode in the Application Server configuration, then they will not be allowed to
access it via a spawn.

• The full parameter list on the CALL to *SERVER;SPAWN is not required; e.g.,

CALL "*sever;spawn" Spawns new console session
CALL "*server;spawn","**" Spawns new session running ProvideX utilities

• All text and messages used by *SERVER are stored in the *APPSERV/APSMESG.EN
message library. EN can be changed to another language suffix.

• %APS is an object itentifier that has information available to the session about its
characteristics. To view the list of session properties, PRINT %APS’*. It is
recommended that you never set any of these object properties or use any of its
functions. Doing so may make the current session unable to spawn new sessions.
The properties are outlined in the section Session Object Properties, p.115.

NoHup$ UNIX/Linux Only. Allows you to decide whether the newly
spawned session is to be started using nohup or not. The use of
nohup determines if a process is to remain attached (or not) to the
process that spawned it; and, if it is attached, then the child process
will terminate when the session the parent is running has terminated.

This is a one-character string option:

"" (null) Use the settings in the application server to determine if
the sessions are nohup’d or not.

"Y" Force the session to be nohup’d.
"N" Force the session to remain connected to the parent

process (not nohup’d).

5. Application Server Session Object Properties

ProvideX Client-Server Reference Back 115

Session Object Properties
Each new session, whether created from a request by *CLIENT, or from a
*SERVER;SPAWN has an OOP object whose object identifier is stored in %APS that
can be used to get information about a session’s characteristics.

For example, the following test can be applied to determine if program code is
running within an application server session:

if %APS and %APS’SessionID$>""
 then UsingAppServer=1

Not all properties will be available in all sessions or for all circumstances.

Server-Side Information

The following %APS properties provide information about the ProvideX process on
the server-side:

Administrator$ Unused - future feature.

AllowConsoleMode$ 0 = No access to console mode, 1 = Console mode
allowed.

AllowReconnect Numeric value representing the type of reconnect allowed.
0 = None.

AppEnvVars$ Unused - future feature.

AppName$ Name of the application the user requested to be run.

AppUMask$ (UNIX/Linux) File creation umask that the session was
created with (not honored by all OS’s).

Arguments$ Additional arguments passed to this session by a request
from the client.

ClientConnectionID$ Internal socket number (IND value) the server daemon
has for the client side of the connection.

ClientConnTimeStamp 8-decimal place Julian time/date when the client side
process connected to the server daemon.

ClientDomain$ (Windows only) OS domain name from the client-side
workstation.

ClientLang$ The 2-character language code the client is using.

ClientNID$ ProvideX NID (machine ID) from the client-side process.

ClientOS$ Descriptive name of the client’s operating system.

ClientPID$ OS process ID for the client-side process (from client).

ClientSoftware$ "WindX" or "JavX" depending on which client software is
connecting.

5. Application Server Session Object Properties

ProvideX Client-Server Reference Back 116

ClientSoftwareVersion$ 9 digit number representing the client’s software version. 7
being the ProvideX TCB(29) and 2 being the WindX major
revision code.

ClientsOfType$ Client access where 1 = Any kind of client can access, 2 =
WindX clients only, 3 = JavX clients only.

ClientTCPProperties$ String of TCP/IP characteristics: IP; socket; machine for the
channel the client-side process has opened to the server
daemon.

ClientUID$ ProvideX UID from the client side process.

ClientUSR1$ The client’s user-defined string information from the
–USR1 argument.

ClientUSR2$ The client’s user-defined string information from the
–USR2 argument.

ClientUSR3$ The client’s user-defined string information from the
–USR3 argument.

ClientUSR4$ The client’s user-defined string information from the
–USR4 argument.

ClientWHnd$ (Windows only) OS Window handle for the client-side
process (from the client machine).

ClientWHO$ ProvideX WHO from the client-side process.

ConnMethod$ "" if the session was started by *CLIENT, or "Spawn" if
started by *SERVER;SPAWN.

CreatedTimeStamp 8 decimal place Julian time/date when the session was
first created.

DestroyedTimeStamp 8 decimal place Julian time/date when the session was
terminated.

DetachSpawns$ 0 = Spawns new sessions as attached processes, 1 = nohup
any new spawns.

ExtraCMDOptions$ Additional command line parameters passed to this
session by a request from the client.

FIDValue$ FID(0) value requested by the client.

KeepAlives$ 0 = No KeepAlives, 1= Using KeepAlives.

Lang$ Language code: EN or FR, etc.

LeadProgram$ CONSOLE for a console mode session, or ProvideX
program name used as the lead program for the
server-side session (LPG contains internal use information
only).

ListeningSocket$ TCP/IP socket number that the server daemon is listening
to for ServerName$.

MaxJavXVer$ 9 digit number representing the maximum JavX version
that may connect (all 0’s is any).

5. Application Server Session Object Properties

ProvideX Client-Server Reference Back 117

MaxWindXVer$ 9 digit number representing the maximum WindX version
which may connect (all 0’s is any).

MinJavXVer$ 9 digit number representing the minimum JavX version
that may connect (all 0’s is any).

MinWindXVer$ 9 digit number representing the minimum WindX version
which may connect (all 0’s is any).

Protocol$ Always set to PVXAS/1.0.

ProvideXEXELocation$ Location of the ProvideX executable used to start the client
process, and to start any subsequent spawns from the
application server.

SecureSSL$ 0 = Normal session, 1= SSL-encrypted session.

ServerConnectionID$ Internal socket number the server daemon has for the
server side of the connection.

ServerConnTimeStamp 8-decimal place Julian time/date of when the server side
process connected to the server daemon.

ServerDir$ Always set to *APPSERV.

ServerName$ Name of the application server the session is being run
through.

ServerPID$ OS process ID for the server side process.

ServerProg$ Name of the server-side program that was launched to
start the physical session, usually *SERVER.

ServerProgLabel$ Name of the entry point for the server-side program that
was launched to start the physical session, usually
Launch.

ServersINI$ INI file the server side process was told to use by the
application server.

ServerTCPProperties$ A string of TCP/IP characteristics: IP; socket; machine for
the channel the server side process has opened to the
server daemon.

ServerUID$ ProvideX UID for the server side process.

ServerUserDomain$ (Windows only) OS domain name the server-side session
was launched as.

ServerUserName$ OS user name the server side session was launched as.

ServerWHnd$ (Windows only) OS window handle for the server-side
process.

ServerWHO$ ProvideX WHO for the server-side process.

SessionID$ Session identification token. Each session is identified by a
unique token between 17 and 24 characters.

SessionStatus Session status whe 0 = None connected, 1 = One side
connected, 2 = Both sides connected, 255 = Terminated.

5. Application Server Session Object Properties

ProvideX Client-Server Reference Back 118

Client-Side Information

The following %APS properties provide information about the ProvideX process on
the client-side:

ShowSpawnsOnDesktop$ (Windows only) 1 = Server to show tasks on taskbar, 0 =
Server to hide task bar buttons.

SocketOptions$ TCP/IP socket options the server side session is using to
talk to the server daemon.

StartInDirectory$ Directory the current session was told to start in by the
application.

AllowReconnect Numeric value indicating what type of reconnect if any is
allowed for this session.

AppName$ Name of the application the user requested to be run.

ClientArguments$ Additional arguments for the server process that the client
requested.

ClientCMDOptions$ Additional command line parameters for the server
process that the client requested.

ClientDomain$ (Windows Only) Client workstation’s OS domain name.

ClientFID$ FID(0) value requested by the client.

ClientINI$ INI file in use for the client side process.

ClientLabel$ Name of the entry point for the client side program which
was launched to start the physical session, usually "" or
Spawn.

ClientNID$ ProvideX NID (machine ID) from the client-side process.

ClientOS$ Descriptive name of the client’s operating system.

ClientPID$ OS Process ID for the client side process.

ClientSoftwareVersion 9 digit number representing the client software’s version.
Version: 7 being the ProvideX TCB(29) and 2 being the
WindX major revision code.

ClientStartinDirectory$ The start-in directory for the server process that the client
requested (not the client’s start-in directory).

ClientTCPProperties$ String of TCP/IP characteristics: IP; socket; machine for
the channel the client-side process has opened to the
server daemon.

ClientUID$ ProvideX UID from the client side process.

ClientUSR1$ Value that has passed to the client on the command line
for –USR1.

ClientUSR2$ Value that has passed to the client on the command line
for –USR2.

5. Application Server Session Object Properties

ProvideX Client-Server Reference Back 119

ClientUSR3$ Value that has passed to the client on the command line
for –USR3.

ClientUSR4$ Value that has passed to the client on the command line
for –USR4.

ClientWHnd$ (Windows only) OS Window handle for the client-side
process.

ClientWHO$ ProvideX WHO from the client-side process.

KeepAlives$ 0 = Do not use KeepAlives, 1 = Use KeepAlives

Lang$ Language code: EN or FR, etc.

LeadProgram$ Name of the lead program the user supplied from a spawn
request.

Protocol$ Always set to PVXAS/1.0.

ProvideXEXELocation$ Location of the ProvideX executable used to start the client
process, and to start any subsequent spawns from the
application server.

SecureSSL$ 0 = Normal session, 1= SSL-encrypted session.

ServerDir$ Always set to *APPSERV.

ServerName$ IP address or DNS resolvable machine name of the server
that the client used to contact the server initially.

ServerSocket$ TCP/IP port or socket number the client used to contact
the server.

SessionID$ Session identification token. Each session is identified by a
unique token between 17 and 24 characters.

SocketOptions$ TCP/IP socket options the client side session is using to
talk to the server daemon.

5. Application Server Customizing

ProvideX Client-Server Reference Back 120

Customizing
The following sections describe some of the customizable features of the ProvideX
Application Server., including the text language, login and change password
dialogues, and *CLIENT.

Language Code

All displayed text for the configuration system, the server, and the clients is located
in a single message library: *APPSERV/APSMESG.??. The default language suffix for
displayed text is EN (English). You can change the language by using a different
language code for the extension.

The Application Server language is dependant on how the message library is loaded
(in a specific order). If an attempt to load the message library succeeds, then that is
considered to be the correct language suffix for all message library and NOMADS
panel library files. Attempts to load the file will continue until successful, or EN is
chosen as the default. The order of the attempts is:

1) %LANG$ global variable set possibly via a START_UP program
2) Environment variable PVXLANG
3) Environment variable LANG
4) Default of EN.

Login and Change Password Dialogues

*CLIENT attempts to use dealer-supplied panels before loading the default panels.

Login Screen

Where ?? represents the language code. The arguments returned by the panel include:

Attempted Panel From Library: *APPSERV/DEALER.??

Arguments: LoginID$, LoginPassword$, ChgPasswordFlag$

LoginID$ String containing the user ID to send to the server daemon. If
this is null, then *CLIENT will terminate without logging in.

LoginPasswrd$ String containing the password for LoginID$ given.

ChgPasswordFlag$ String containing a 1, which indicates the user wishes to
change their password, or any other value, which is ignored.

5. Application Server Customizing

ProvideX Client-Server Reference Back 121

Change Password Screen

Where ?? represents the language code. The arguments returned by the panel include:

Custom *CLIENT Programs

Because the application server uses a protocol concept to connect the clients to the
server, you may customize the *CLIENT program, or create your own to provide
your software with a custom interface for your end-users.

The protocol for the requests that the server accepts is similar to HTTP protocol. You
send a request and the server will respond with an answer. Requests must be issued
in the form:

<METHOD><SPACE><REQUEST><SPACE><PROTOCOL><CRLF>
<METHOD> can be: LOGIN, SESSION, PASSWORD, QUIT
<REQUEST> is the data required by the method, in encoded form.
<PROTOCOL> is always "PVXAS/1.0"
<CRLF> is $0D0A$
<SPACE> is always " " or 20

The encoding is done using the following function:
def fnEncrypt$(local dat$)=hta(rdx(hta(dat$)))

While this encoding is not difficult to break, it ensures that the text of all commands
is encoded and not sent as readable text. This makes it much more difficult for
people to obtain user ID’s and passwords when you are not running SSL encryption.
Only the commands sent to the server are encoded. The responses from the server
are not. Also, once the session has been started successfully and WindX or JavX has
taken control, there is no further encoding in place.

Many customizations features exist. The %APS object and the *CLIENT program for
the client side of the connection contain properties and methods which may be used
to establish communications and send and receive responses. Some of the methods
include the ability to transfer files and so on.

Attempted Panel From Library: *APPSERV/DEALER.??

Arguments: Password1$, Password2$

Password1$ String of the new password. If null, then the change password
operation is aborted and the *CLIENT program is terminated.

Password2$ String that must match Password1$.

5. Application Server Customizing

ProvideX Client-Server Reference Back 122

Protocol Methods
All protocols require a $8A$ between any arguments in their <REQUEST> section,
including a trailing SEP for the last field in the <REQUEST>.

The following is an example of a LOGIN request, where the User ID is "Harry" and
the password "YaItsMe".

OUTSTRING$="LOGIN"+"
"+fnEncrypt$("Harry"+$8a$+"YaItsMe"+$8a$)+"
"+"PVXAS/1.0"+$0D0A$

All responses from the server are in the form of a single line of text ending in a
$0D0A$. The single line of text is broken down into 3 sections

<RESULT CODE><SPACE><TEXT><SPACE><PROTOCOL><CRLF>

The Result Codes are 3 digit numerical codes:

Codes 100-199 are not sent to the clients but are used internally by the server.
Codes 200-299 indicate acceptance.
Codes 300-399 indicate acceptance but further action is required.
Codes 400-499 indicate failure.
Codes 500-599 indicate a server level failure.

With codes 400 or higher, the server will automatically close the connection to the
client right after it sends its response. If you wish to talk to the server you must
reestablish the connection.

The <TEXT> given will indicate the nature of the response, or at times it will give
back information that should be maintained for future reference. The methods
LOGIN, PASSWORD and QUIT will only ever get one response from the server.

The method SESSION will get one, possibly two responses from the server.

If a successful SESSION request is received by the server, then the server will respond
with a 200 result. The text of the result will contain a Session Token which the client
should hold on to for future reference. When the client receives a 200 response it
must immediately recheck its receive channel, and wait for a 205 response which
indicates Ok To Go Ahead, meaning go ahead and run WindX.

If the SESSION request was unsuccessful, then the client will only receive 1 response
indicating why it failed.

An example of a SESSION request would be:

Application$="MyApp"

LOGIN Request Fields: LoginID$, LoginPassword$

SESSION Request Fields: Application$, Fid$, StartInDirectory$,
ExtraCmdOptions$, ExtraArguments$

PASSWORD Request Fields: Password1$, Password2$

QUIT Request Fields: NONE

5. Application Server Customizing

ProvideX Client-Server Reference Back 123

Fid$="T99"
StartInDirectory$=""
ExtraCmdOptions$=""
ExtraArguments$=""

OUTSTRING$="SESSION"+" "+fnEncrypt$
(Application$+$8a$+Fid$+$8a$+StartInDirectory$+$8a$+ExtraCmdOptions$+$8a$

+ExtraArguments$+$8a$)+" "+"PVXAS/1.0"+$0D0A$

An example of a response you would receive would be:

"200"+" "+"ABC34FG91ETSFJL34923"+" "+"PVXAS/1.0"+$0D0A$

The response codes typically received for a session request are:

200 Successful, Session Token contained in text. Now wait for a 205.

205 Go Ahead, both server and client are ready to connect to each other.

301 You must Login first.

410 Console Mode is not allowed.

412 Access to Application is Denied.

414 to 502 Other errors indicating specific failure, the specifics of the error is
given with the <Text> returned.

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 124

Sample Setup Procedure
This section describes a typical procedure for setting up and running the Application
Server for use with a ProvideX client-server application. Configuration details are slightly
different depending on whether the server is a Windows or UNIX/Linux system.

The procedure uses the following sample ProvideX application saved as app1:

0010 PRINT 'CS'
0020 BEGIN:
0030 PRINT @(0,0),"Wecome to the Applicaton Server",
0040 PRINT @(0,3),"You are currently running "+PGN,
0050 PRINT @(0,4),"Local Work Directory: "+LWD,
0060 PRINT @(0,5),"User ID: "+WHO
0070 PRINT @(0,7),"Press any key to escape to console mode:",
0080 OBTAIN (0,SIZ=1)X$
0090 ESCAPE
0100 GOTO BEGIN

MS Windows: The Windows configuration assumes that app1 is saved on the server system in the
following directory:

C:\app\

UNIX/Linux: The UNIX\Linux configuration assumes that app1 is saved on the server system in
the following directory:

/home/user1/app/

UNIX\Linux examples also assume a user login on a machine named user1, which
has access to run ProvideX. This user also has a home directory of /home/users1/
and a password of password. Change these references to your user name, password,
and home directory.

Using JavX for the UNIX/Linux Configuration
The GUI Server Configuration utility will not run directly under a UNIX/Linux
version of ProvideX unless it is accessed using a graphical thin-client (JavX SE or
WindX). The difficulty for the initial setup is that the thin-client will not be
functional unless the hosting facility is already configured.

A simple solution to this particular dilemma is to run the configuration via JavX SE
using *NTHost/*NTSlave directly on the host itself. In other words, JavX provides the
GUI environment necessary to run the user interface for the Application Server
configuration without the need for remote access. For complete documentation on
JavX SE, see JavX for PC Platforms, p.60.

The UNIX/Linux procedure for Step 1.(below) explains how to use JavX to launch
the user interface of the Application Server configuration utility.

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 125

Step 1. Start the Configuration Utility
Launch the user interface to the Server Configuration utility.

MS Windows: From the Windows Start menu, select:
Start > Programs > Sage Software > ProvideX Vx.xx > Application Server >App
Server Configuration

or

In ProvideX console mode, enter:
->run "*appserv/config"

UNIX/Linux: Start *NTHost. At the system prompt, enter:
#\usr\pvx *nthost -arg 10000 root 000 10005

This will launch an *NTHost session on the server as user ID root starting from port
10000 to 10005.

If JavX is not already installed, download and install the JavX Developers Kit (or just
the JAR files) from the ProvideX website. Run JavX to connect to *NTHost and run
the Application Server configuration:

java -jar -JavXSE.jar
"server=localhost;port=10000;program=*appserv/config"

If you do not have the PATH variable set to the paths were the java bin directory or
where the JavXSE.jar is located, then you must use absolute paths.

Step 2. Create a New Application Server
Once the Server Configuration utility is started, the interface console will appear in
a new window. It is divided into tabbed panels indicating the different options and
fields available for configuring the new server.

Enter a new name in the Server: field (e.g., app) then select New at the bottom of the
main console.

Step 3. Specify Server Properties
Click on the Server tab to begin entering the primary attributes for the currently-
selected server.

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 126

MS Windows: In the Server tab/panel, keep Socket: 10000, select the KeepAlives checkbox, and
change the Start-In Directory to "C:\app\".

UNIX/Linux: In the Server tab/panel, keep Socket: 10000, enter (Default User) User Name: user1,
and change the Start-In Directory to "/home/user1/app".

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 127

Step 4. Define Client Preferences
In the Clients tab/panel, ensure that the Client Must Login checkbox is selected, and
keep the following (default) information:

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 128

Step 5. Configure Application Properties
In the Apps tab/panel, select the New button. In the New - App Props panel, enter
App Name: app1, Lead Program: app1, and Client Type: Any Client Type (from the
drop list).

Step 6. Configure User Properties
In the Users tab/panel, select the New button.

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 129

MS Windows: In the New / Current Users Properties panel, enter Remote Users Name: user1, Full
Name: user1, and Password: password. Select the User Can Change Password
checkbox. Select Run Any Configured App (from the drop list).

UNIX/Linux: In the New / Current Users Properties panel, enter Remote Users Name: user1, Full
Name: user1, and Password: password (i.e., valid user ID and password). Select
the User Can Change Password checkbox. Select Run Any Configured App (from the
drop list). Select the Server User Name Same as Remote User Name checkbox.

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 130

Step 7. Start the Server
In the Server tab/panel, select the Start button to run the server..

Once the server has started, a PID (Process ID) will appear in the Status: box to
indicate that the server is now running.

Step 8. Run the WindX Client
On the client system, ensure that WindX (Plug-in or Standalone) is installed. Create a
shortcut that includes a Target similar to the following:

"c:\pvx\pvxwin32.exe" -mn "*client" -ARG 1.160.10.240 10000 "app1"

Where

"c:\pvx\pvxwin32.exe" Example path to ProvideX on the client system.

 -mn Starts minimized.

"*client" ProvideX program used to connect the client to the
Application Server.

-ARG Keyword marking the start of the argument list

1.160.10.240 Example IP address of the server.

10000 TCP/IP port (socket) that the server daemon is listening to.

"app1" Lead program that the server is to run (explained at the
beginning of the procedure, p. 124)

5. Application Server Sample Setup Procedure

ProvideX Client-Server Reference Back 131

When you click on (run) the shortcut, the following dialogue will appear:

Enter User Name: user1 and Password: password then click OK to connect to the
application server. If the connection is successful, the WindX session will start up in
a new interface window (console), as indicated below:

5. Application Server Troubleshooting

ProvideX Client-Server Reference Back 132

Troubleshooting
This section provides general troubleshooting information regarding some of the
issues you may encounter when running the Application Server.

Network Connectivity
Verify IP connections if the client is unable to communicate with the server. Even if a
client has successfully connected to the server in the past, several events could cause
unsuccessful attempts at any time; i.e., changed TCP/IP settings, router problems,
DNS services down, duplicate IP address on the network, etc.

Server-Side Issues
Difficulties can be caused by several server-specific issues; i.e., incorrect permission
settings, daemon not running, invalid daemon command line syntax, socket in use
by another application, daemon starting in the wrong directory, etc.

The most common problems involve UNIX file permissions. When the application
server’s configuration system is first run, and every time the software is upgraded,
the *.pvk files in the lib/_appserv directory are either created or recreated as
required. If the user that you are logged in as has not set a UMASK 000, then these
files may not be writable by other users. The lib/_appserv/sessions.pvk
requires Read/Write file permissions for all users for whom sessions will be
launched.

File permissions on the ProvideX ACTIVATE.PVX file must be Read/Write and all
utility programs must have at least Read permissions for the user the sessions will be
run under.

Client-Side Issues
Verify that the client configuration is using the correct domain and password. The
client may fail if the server is unreachable, which is a symptom related to Network
Connectivity. The client’s firewall configuration may be the cause of a failure if
programs are unable to receive data from the server.

ProvideX Client-Server Reference Back 133

Client-Server Reference 6
AutoUpdater

The ProvideX base activation includes a utility, called the AutoUpdater, that provides
an automatic method to check for and update client applications whenever they
connect to a copy of ProvideX on the server. It offers several features, including:

• Repository based system
• Software to be pushed resides on the server
• No client software installation required
• Customizable to include your software requirements
• Requires V7 ProvideX on server, with a V7 activation key
• Performs upgrades, downgrades or repairs
• Intelligent restart capability if session is severed
• Configurable user interaction
• Automated COM and DLL registration
• Detects and shuts down other client sessions currently invoked on workstation

that are using the same executable
• No client reboot required after an upgrade, downgrade, or repair
• Windows 9X, NT, 2000, XP, Server 2003 compliant
• Logging capability.

The AutoUpdater supports WindX (stand-alone or plug-in Version 4.11 or higher)
and ProvideX with WindX (Version 5.10 or higher). This chapter documents the
configuration and functionality of the ProvideX AutoUpdater.

AutoUpdater Configuration, p.135
How it all Works, p.142
The Repository File, p.145
Customizing the AutoUpdater, p.146
Troubleshooting, p.147

Topics

6. AutoUpdater

ProvideX Client-Server Reference Back 134

Activation and Product Components
Installat ion Overview

The AutoUpdater is shipped with ProvideX Version 7 (or higher) and it requires a
Version 7 (or higher) activation. Once ProvideX is installed on your server, a new
directory will be created called _updater under the lib directory. This directory
contains 4 files and 1 directory:

The AutoUpdater software requires that a copy of the autoupdate.conf file (in
the \lib_updater\ directory) be saved as autoupdatecustom.conf within the
same directory on the server. We recommend that you create a copy – do not
overwrite the autoupdate.conf.

Download the required repository file for the version of ProvideX that you wish to
auto update. For more information, see The Repository File, p.145.

Enabling the AutoUpdater
To enable the AutoUpdater, open the newly-created autoupdatecustom.conf file
in a text editor (e.g., Notepad) and change AutoUpdate=Off to AutoUpdate=On
under the [DEFAULTS] section of the file. Save the autoupdatecustom.conf file.
At this point, any new WindX sessions that try to connect to the ProvideX on your
server will invoke the AutoUpdater software to start looking for updates.

cinfo Information utility to be placed on the client workstation.

updater.pvc AutoUpdater engine.

windx.upd Main program called by the Windows terminal device for
talking to the AutoUpdater.

autoupdate.conf Default configuration file for the AutoUpdater.

images Directory of all the required images for the AutoUpdater
screens which are to be moved to the client workstation.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 135

AutoUpdater Configuration AutoU pdat er Configuration

The autoupdatecustom.conf file is divided into three main sections:

The contents of the configuration file will appear similar to the following:

[DEFAULTS]
AutoUpdate=Off
Interactive=Prompted
AllowClientInitiation=Y
AllowUpgrade=Y
AllowDowngrade=Y
AllowCompare=Y
AllowClientCancellation=Y
CompareFrequency=D
LookAndFeel=4
KillProcessingMsg=Y

[Debug]
LogLevel=2
AutoUpdateDebug=0

[Products]
1 = ProvideX
2 = WindX Standalone
3 = WindX Plugin

[Product:ProvideX]
DisplayName="ProvideX"
CurrentVersion=6.50.0500
RepositoryPrefix="pvx"

[Product:WindX Standalone]
DisplayName="WindX (Standalone)"
Identifier=WXS
CurrentVersion=6.50.0500
RepositoryPrefix="pvx"

[Product:WindX Plugin]
DisplayName="WindX (Plugin)"
Identifier=WXP
CurrentVersion=6.50.0500
RepositoryPrefix="pvx"

Configuration settings, options, and default values are described below.

[Default] Default values.
[Debug] Debugging options or logging levels.
[Product] Possible products to check.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 136

AutoUpdate=

Off Default. AutoUpdater is disabled.

On AutoUpdater is active and ready.

Interactive=

Prompted Default. Display a dialogue to the user describing the status of the
AutoUpdater and showing a progress bar (example below).

Silent No information is displayed.

AllowClientInitiation=

Y Display initial screen advising the user as to what is going to take place
(example below).

N Default. No initial screen displayed before performing task.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 137

AllowUpgrade=

Y Perform upgrade if client workstation version is lower than version obtained
from CurrentVersion=.

N Default. Do not perform upgrade.

AllowDowngrade=

Y Perform downgrade if client workstation version is higher than version
obtained from CurrentVersion=.

N Default. Do not perform downgrade.

AllowCompare=

Y Perform repair operation if client workstation version is the same as the
version obtained from CurrentVersion=.

N Default. Do not perform a repair operation.

AllowClientCancellation=

Y Adds Cancel button that allows client to cancel an auto update in prompted
mode.

N Default. User is not allowed to stop the AutoUpdater.

CompareFrequency=

Compare if the versions are the same:

D Once a day.

W Once a week.

M Default. Once a month.

nDay Day of the month – where n (1-4) and Day (mon, tue, wed, thu, fri, sat,
sun); e.g., CompareFrequency=2tue is the second Tuesday of the month.

LookAndFeel=

Windows look and feel if Interactive=Prompted:

2 Windows 3.1 style.

3 Windows 95 style.

4 XP style.

A null defaults to the look and feel of the current session.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 138

KillProcessingMsg=

Y Issues message box advising user that a session running with the same
executable is going to be terminated in order to update files that may be locked
or in use.

N Default. No message is issued and the task is killed.

LogLevel=

0 Logging disabled.

1-5 Default. Log the start and end routine messages as well as error messages.

6-9 Log the start and end routine messages.

AutoUpdateDebug=

Internal use only. Values 1 through 7 will execute specific escapes during the
product update program execution; i.e., in the windx.upd program.

DisplayName=

Name to display in the AutoUpdater Window if Interactive=Prompted.

Identifier=

Product ID used by AutoUpdater to determine which settings to read, as well as
what files need to be moved from the manifest.conf file.

PVX ProvideX.

WXS WindX (Standalone).
WXP WindX (Plug-In).

CurrentVersion=

Value to be compared against the client workstation version as well as part of the
key to the Repository directory location. Format is MM.NN.PPPP where:

M Major version.

N Minor version.

P Patch

RepositoryPrefix=

Used along with CurrentVersion= to identify which directory the AutoUpdater
needs to look in; e.g.,
CurrentVersion=7.00.0000
RepositoryPrefix="pvx"

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 139

The AutoUpdater will use \lib_repository\pvx7.00.0000\ directory to
obtain all manifest and files that need to be moved to the workstation

MaxConnections =

Cap for the number of clients allowed to perform an
Upgrade/Downgrade/Compare at the same time. For example,

MaxConnections = 20.

In this case, only 20 clients will be allowed to interact at any time with the
AutoUpdater. The 21st will either be prompted with a choice to retry or procced with
no update (if Interactive=Prompted) or will continue as normal (if
Interactive=Silent).

Stime =
ETime =
DaysOfWeek =

These allow you to specify the start/end times and the day(s) of the week when
updates will be permitted to occur, if required. If am or pm is not specified, the
AutoUpdater will default to am. All times and days of the week are local to the
Server. In the following example, auto updates will only happen between 1pm -
7pm on Monday, Thursday, Saturday and Sunday:

Stime = 1 pm
ETime = 7 pm
DaysOfWeek=1,4,6,7

FixAttributes =

Y This will change only the ProvideX files that need to be updated from read-only
to read-write, which allows the AutoUpdater to push the live files without any
user intervention.

N Default. Users will be prompted with a message box advising them which files
need to have their read-only permissions modified to complete the
AutoUpdate.

Note: Surround values in quotations " " to preserve the case.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 140

Options for IP-Specific Configuration

Configuration options may be grouped to target specific IP addresses (or ranges of
IP addresses). These appear as section headings similar to [10.100.20.*] or
[10.100.28.254]/2. The following will target all clients that connect using an IP
address that starts with "10.100" to have the flag AllowUpgrade set to No:

[10.100.*]
AllowUpgrade = N

This following method of masking allows you to specify how many bits from the
right hand side of the IP address may be considered wild cards:

[10.100.28.254]/20

In this case, 20 bits from the right hand side may be any value; i.e.,

 10 100 28 254
00001010.01100100.00011100.11111110
<---Match---><--Anything---------->

This indicates a range of

00001010.01100000.*.* = 10.96.*.*

to

00001010.01101111.*.* = 10.111.*.*

Choosing IP Addresses for Upgrade, Downgrade or Compare

Specific IP address can also be included or excluded from an upgrade/downgrade
or compare. The choices are described in the examples below:

[UpgradeIncludeIP]
10.100.20.1
10.100.20.2
10.100.20.3

Sets AllowUpgrade = Y for the IP addresses
10.100.20.1, 10.100.20.2 and
10.100.20.3.

[UpgradeExcludeIP]
10.100.28.252

Sets AllowUpgrade = N for 10.100.28.252.

[DowngradeIncludeIP]
10.100.40.1

Sets AllowDowngrade = Y for 10.100.40.1.

[DowngradeExcludeIP]
10.100.50.1

Sets AllowDowngrade = N for 10.100.50.1.

[CompareIncludeIP]
10.100.80.1

Sets AllowCompare = Y for 10.100.80.1.

[CompareExcludeIP]
10.100.90.1

Sets AllowCompare = N for 10.100.90.1.

6. AutoUpdater AutoUpdater Configuration

ProvideX Client-Server Reference Back 141

Configuration File Flow

The updater.pvc program processes the configuration information as follows:

1. The autoupdate.conf file is read top to bottom into a memory file.

2. The autoupdatecustom.conf file is read. If the custom file has a setting of
reset=Y, then the memory file is purged and re-loaded with information from
autoupdatecustom.conf. This overwrites any settings that might have been
previously set.

3. The values located under [Defaults] are read and set.

4. The values located under [Debug] are read and set.

5. The updater.pvc program scans through the product list to locate a product that
contains the same Identifier as the one that cinfo or cinfocustom found on
the workstation. The items associated with that Product are read and set.

6. The values located under [IP Address:MachineName] are read and set.

7. The values located under [UserID] are read and set.

Example:

[DEFAULTS]
AutoUpdate=Off
Interactive=Prompted
AllowClientInitiation=Y
AllowUpgrade=Y
AllowDowngrade=Y
AllowCompare=Y
AllowClientCancellation=Y
CompareFrequency=D
LookAndFeel=4
KillProcessMsg=Y

[Debug]
LogLevel=2
AutoUpdateDebug=0

[Products]
1 = ProvideX
2 = WindX Standalone
3 = WindX Plugin

[Product:ProvideX]
DisplayName="ProvideX"
CurrentVersion=6.50.0500
RepositoryPrefix="pvx"

[Product:WindX Standalone]
DisplayName="WindX (Standalone)"
Identifier=WXS
CurrentVersion=6.50.0500

6. AutoUpdater How it all Works

ProvideX Client-Server Reference Back 142

RepositoryPrefix="pvx"

[Product:WindX Plugin]
DisplayName="WindX (Plugin)"
Identifier=WXP
CurrentVersion=6.50.0500
RepositoryPrefix="pvx"

[10.100.10.10]
AllowUpgrade=N

[me]
AllowDowngrade=N

In this example, all clients connecting to the AutoUpdater server with the ProvideX
or WindX (Standalone) products will receive an upgrade. Any client's connecting
with the WindX (Plug-in) product or with an IP address of 10.100.10.10 and users
with the ID of [me] will not be able to perform a downgrade.

How it all Works How it all Works

The AutoUpdater works on the idea of a "client-to-server" relationship, where the
server runs ProvideX Version 7 (or higher) with either the ProvideX Application
Server, *NTHost/*NTSlave, or Telnet service. Clients may only connect using WindX
(Standalone or Plug-in) or ProvideX with WindX.

The following will happen when a workstation connects to a server running
ProvideX and the AutoUpdater correctly installed and configured:

1. /dev/winterm determines if this is WindX. If so, it calls *updater/windx.upd
if present; otherwise, it continues as normal.

2. windx.upd takes control and begins checking which cinfo program exists on
the server (cinfo or cinfocustom).

3. cinfo or cinfocustom is called on the client workstation. If this program
doesn't exist on the client workstation it will be copied to the client workstation
under /lib/_updater/.

4. cinfo or cinfocustom returns information about the client workstation.

• cinfo version

• IP address

• Network ID

• User ID

• ProvideX version

• Product ID of WindX (Standalone–Plug-in) or ProvideX

• Current date and time.

6. AutoUpdater How it all Works

ProvideX Client-Server Reference Back 143

5. windx.upd verifies the version of cinfo or cinfocustom. If the client version is
the same as the server’s, then the file from the server will be moved over and
re-called.

6. windx.upd obtains all configuration information from the AutoUpdater engine
(updater.pvc program). See AutoUpdater Configuration, p.135.

7. The client's version is compared against the version read from autoupdate.conf.

8. If the client's version is greater than the value stored in autoupdate.conf, a
downgrade will be performed, if allowed.

9. If the client's version is less than the value stored in autoupdate.conf, an
upgrade will be performed, if allowed.

10.If the client's version is equal to the value stored in autoupdate.conf, a repair
will be performed, if allowed.

What Happens During an Upgrade, Downgrade, or Repair?

A file is created on the server and locked. This file resides in the *updater directory
and uses information returned by (cinfo or cinfocustom) to build the name.

<IP Address><Network ID><ProvideX Version><Product ID>

Example: 10.100.10.10mybox6100000wxs

This file contains the last successfully-moved file, which is where the AutoUpdater
will pick up in the event of a connection failure.

If a client tries to start a new session using the same pvxwin32.exe to connect to
the same server after an upgrade, downgrade or repair has been initiated, they will
receive a dialogue indicating that a process is currently being used by the
AutoUpdater and the session will time out.

During an upgrade or downgrade:

1. windx.upd calls cinfo or cinfocustom to obtain all information about who
initiated this current session writes out how to re-launch the session in a text file
(autoupdatelaunch.txt) on the client workstation under *updater.

2. windx.upd will get updater.pvc to load all manifest information into memory.

3. windx.upd spins through this memory file and decides if the currently-read file
needs to be moved to the client workstation.

4. If the file’s last modified version number is higher than the workstation version,
then this file will be moved to the workstation under the *updater\tmp\
directory. In the case of a downgrade, all files will be moved.

6. AutoUpdater How it all Works

ProvideX Client-Server Reference Back 144

5. If it is determined that a file will be moved, a ProvideX keyed file
(autoupdatecompare) will be created with a header record indicating the
date/time the AutoUpdater started, and containing records of each file moved
(date/timestamp) with a checksum value to the size of the file.

6. After the manifest has been completed and read, windx.upd will then use
updater.pvc to create a VBScript file (autoupdatelaunch.vbs) on the client
workstation under the *updater directory.

7. windx.upd takes control, invokes the autoupdatelaunch.vbs file, and then
exits.

8. autoupdatelaunch.vbs takes over and moves all the files on the client’s
workstation *updater\tmp\ to the live system. It rereads autoupdatelaunch.txt
and restarts WindX with the options that originally started this process.

During a repair:

1. windx.upd opens and reads the header record of autoupdatecompare and
verifies settings in the autoupdate.conf file that a repair needs to take place.

2. If it is determined that the repair is to take place, windx.upd reads each record
found in autoupdatecompare and compares the date/timestamps as well as the
checksum. If windx.upd finds a discrepancy, it will reload this file from the
server’s repository directory, and re-update this record as well as the header
record with the last compare date.

3. After the autoupdatecompare file has been completed, windx.upd then
invokes updater.pvc to create a VBScript file (autoupdatelaunch.vbs) on
the client workstation under the *updater directory.

4. windx.upd is given control and invokes the autoupdatelaunch.vbs file. It
then returns to /dev/winterm and continues as normal.

6. AutoUpdater The Repository File

ProvideX Client-Server Reference Back 145

The Repository File The Repositor y File

Repository Installation

Once the auto update has been configured, all that remains is to download the
repository that you want your client system to be upgraded or downgraded to.

UNIX or Linux
We assume the default installation directory name of /pvx.*. From the ProvideX
website, download the required repository-providex-X.XXX.XXXX.taz.

1. Copy the repository-providex-X.XXX.XXXX.taz file to /tmp.

2. Switch to the ProvideX LIB directory.

3. Enter the following commands to expand/install the software:
umask 0
cd /tmp
mv repository-providex-X.XXX.XXXX.taz repository-providex-X.XXX.XXXX.tar.Z

4. Extract repository-providex-X.XXX.XXXX.tar.Z.
cd /pvx/lib
tar -xvf /tmp/repository-providex-X.XXX.XXXX.tar

You should now have a _repository directory under the LIB directory.

Windows
We assume the default installation directory name of C:\pvx.*. From the
ProvideX website, download the required
repository-providex-X.XXX.XXXX.zip.

1. Copy the repository-providex.6.50.0500.zip file to C:\tmp.

2. Extract the repository-providex.6.50.0500.zip file to C:\pvx\lib\
directory.

You should now have a _repository directory under the LIB directory.

Repository Manifest information

Once you have successfully deployed the repository file you will find a new
directory called _repository under the LIB directory. This directory holds a sub
directory that the autoupdate.conf or autoupdatecustom.conf file points to.

The default name for this subdirectory is PVXx.xx.xxxx, where x.xx.xxxx represents
the version of the files in this subdirectory.

6. AutoUpdater Customizing the AutoUpdater

ProvideX Client-Server Reference Back 146

Within this subdirectory is the manifest.conf file that holds all the information
about the files; e.g.,

pvxcom.exe;Ver=5.10.2000;ASCII;ID=WXS,PVX;Reg=9;RegInstall=pvxcom.exe
/unregserver;RegUnInstall= /unregservermycom.exe

Where

During an upgrade the VER information is compared against the version of the
workstation. If the VER is greater than the workstation version and ID is equal to the
Workstation ID returned from cinfo or cinfocustom, then this file will be moved
to *updater\tmp\ on the client workstation. During a downgrade, all files are
moved regardless.

Customizing the AutoUpdater Cus tomizing the AutoUpdater

Adding custom files in the AutoUpdater is a two-step process.

1. Make your modifications to the repository directory for the version that the
AutoUpdater is currently looking at.

2. Make your modifications to the manifest.conf file of the repository that the
AutoUpdater is currently looking at.

Example:

In this example we will assume that RepositoryPrefix="pvx",
Currentversion=7.10.0000, and the install path is /pvx/ on a UNIX box.

Create a new directory under LIB and add some programs and files. Our version of
database.pvc is to be deployed to all workstations for a Version 7.10.000 upgrade.

Log on to the AutoUpdater server and point to the directory
/pvx/lib/_repository/pvx7.10.000/lib. In this directory, create the new
directory /_mydir/ (i.e., /pvx/lib/_repository/pvx7.10.000/lib/_mydir/).
Move the files, myprog1 and mydata1, to this directory.

Open our version of database.pvc to the appropriate path of /pvx/lib/_dict/.
Open the manifest file located in the repository that has just been modified.

VER ProvideX Version number when this file was last modified.

ASCII Transfer format–either ASCII or Binary (default).

ID Product ID that are to receive this file – if not specified, then it applies to all.

Reg What needs to be done to the Windows registry.
1 indicates register and unregister the file with regsvr32.
9 indicates a custom expression is to be issued; i.e.,
RegInstall=pvxcom.exe /unregserver;RegUnInstall= /unregserver

Remark line.

6. AutoUpdater Troubleshooting

ProvideX Client-Server Reference Back 147

There is no need to change the lib_dict\database.pvc entry, since this file is
already present and all we did is modify what program is to be deployed.

Add the two new files to the manifest.conf. Since we want these new files
deployed only with ProvideX version 7.10.0000 and higher, set the VER option to
7.10.0000.

lib_mydir\myprog1 ;VER=7.10.0000
lib_mydir\mydata1 ;VER=7.10.0000

Now, any new clients that require an upgrade will receive our custom version of
database.pvc, our new directory, and two files.

Troubleshooting Trouble Shooting

The AutoUpdater uses a VBScript to move files on the client's workstation from the
\lib_updater\tmp\ directory to the live system after it has closed the current
session. If your workstation is running any spyware detection software, it will advise
you that a script is trying to execute called autoupdaterlaunch.vbs. This script
must be allowed to operate so that the AutoUpdater can complete the update.

During the execution of the VBScript, some users might receive a message advising
them that the directory the script is trying to move a file to (or file it is trying to
replace) doesn’t have write permissions. At this point, you will receive a message
box alerting you to what directory is having this issue. Change the permissions and
allow the script to continue to move files.

6. AutoUpdater Troubleshooting

ProvideX Client-Server Reference Back 148

	Menu
	Contents
	Preface
	Using this Documentation
	Conventions
	Chapter Outlines

	1. Introduction
	Thin-Client Products
	Background and Prerequisites

	2. Client-Server Functionality
	Hosting Facilities
	Standard Thin-Client Behaviour
	JavX vs. WindX
	Thin-Client Utility

	3. WindX - Windows Thin-Client
	Installation and Configuration
	Launching WindX
	WindX Thin-Client Functionality

	4. JavX - Java-Based Thin-Client
	Installation and Configuration
	Launching JavX
	Common Functionality and Limitations
	JavX for PC Platforms
	JavX for Portable Devices

	5. Application Server
	Server Configuration
	Running the Server
	Client Configuration
	Session Spawning
	Session Object Properties
	Customizing
	Sample Setup Procedure
	Troubleshooting

	6. AutoUpdater
	AutoUpdater Configuration
	How it all Works
	The Repository File
	Customizing the AutoUpdater
	Troubleshooting

